《Nature Methods》将空间蛋白组学评选为2024年度技术,凸显了在功能性蛋白的视角上开展组织空间原位分析的重要性。空间蛋白组学涵盖了多种技术类型,其中基于免疫组化原理的多重空间成像技术占据了主导地位。这些先进技术包括但不限于循环免疫荧光(CycIF)、迭代漂白扩展多重性(IBEX)、多重离子束成像(MIBI)、成像质谱流式(IMC)和由原先的CODEX技术升级而来的Phenocycler-Fusion(PCF)技术。这些技术依靠超多重检测、高分辨率成像等优势已经被全球不同研究领域的科学家应用在疾病机制探索、组织的细胞图谱构建、组织微环境的解析等研究中。这些已发表的空间高分辨率图像结果显然是一个巨大的宝库,借助这些已发表的资源可以为相关领域的研究者提供重要的参考价值,例如预先判断组织中有哪些细胞类型、用什么marker可以定义不同组织中的特定细胞类型、不同功能性蛋白的组织空间分布等。那么如何检索和下载这些空间单细胞蛋白组的数据?有哪些公共数据库资源可供研究者调阅?今天小编就以PCF空间单细胞蛋白组为例,就如何检索和下载PCF的数据进行了相关资料的整理。
Phenocycler-Fusion技术是一种先进的空间组学分析平台,旨在实现单细胞分辨率的高维蛋白质空间分析,同时保留组织微环境的空间信息。该技术结合了高通量抗体标记、循环成像和自动化数据分析,广泛应用于肿瘤学、免疫学及转化医学研究。
第一种检索PCF数据的方法就是直接通过文献中的Data availability这部分的内容查询到上传的数据库链接。基本上大部分期刊都会要求作者上传原始数据,但是对于空间单细胞蛋白组而言原始的图像数据非常大,很多作者其实是上传的处理后的数据,或者是图像分割完后的单细胞表达矩阵而非图像,所以也要加以甄别。但是不管如何,这些不同维度的数据都可以为我所用,进行相关分析。接下来我们用实例说明。
我们检索了2024年发表在Cell上的一篇骨髓组织的PCF数据。这篇文章的题目为“Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging”。(https://doi.org/10.1016/j.cell.2024.04.013)。研究者对正常和急性髓系白血病的骨髓样本开展了54-plex的PCF检测。 在这篇文章的Data availability部分我们可以看到作者将PCF的原始图像数据上传到了FigShare网站上。FigShare是一个专注于科研数据共享与管理的开放获取平台,由Digital Science(英国Macmillian出版公司的分支机构)支持建设&#x