微积分基本定理是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。
微积分基本定理包括:原函数存在定理和牛莱公式。利用原函数存在定理可以很方便地证明牛莱公式。本文只谈原函数存在定理,从三个角度让你更加深入地理解这个重要的定理。
01 物理的角度
(1)如图1,物体以速度 v = a v=a v=a作匀速直线运动, t t t时刻的路程为 s = a t , s=at, s=at, 从几何上看,等于图中长方形面积;
(2)如图2,物体以加速度a ,初速度为0作匀加速直线运动,
t
t
t时刻的路程为
s
=
1
2
a
t
2
s=\frac{1}{2}at^2
s=21at2, 从几何上看,等于图中三角形的面积(思考一下为什么?);
(3)如图3, 物体的速度为任意一个连续函数
y
=
f
(
t
)
y=f(t)
y=f(t), 从时刻a运动到时刻
x
x
x, 路程可以这样求:将区间
[
a
,
x
]
[a,x]
[a,x]等分成n个小区间,当n充分大时,每个小区间上都可以看成是匀速运动,从而其上的路程为长方形(道理同(1)),整个区间
[
a
,
t
]
[a,t]
[a,t]上的路程为所有这n个长方形的和,让
n
→
∞
n\rightarrow \infty
n→∞,得到
s
(
x
)
=
∫
a
x
f
(
u
)
d
u
,
s(x)=\int_a^xf(u)du,
s(x)=∫axf(u)du, 它等于曲边梯形的面积,注意还是“面积”。
注意到,牛顿已经知道速度函数
v
(
x
)
v(x)
v(x)是路程函数
s
(
x
)
s(x)
s(x)的“流数”,即今天说的导数,而
s
(
x
)
s(x)
s(x)又是“面积函数”
∫
a
x
f
(
u
)
d
u
\int_a^xf(u)du
∫axf(u)du, 两者联系起来就像拼图一样拼出了下面的公式:
(
∫
a
x
f
(
u
)
d
u
)
′
=
f
(
x
)
.
\left(\int_a^xf(u)du\right)^\prime=f(x).
(∫axf(u)du)′=f(x).
这个公式说明面积函数 s ( x ) s(x) s(x)是 f ( x ) f(x) f(x)的原函数,反过来说, f ( x ) f(x) f(x)是 s ( x ) s(x) s(x)的导函数。
02 几何的角度
导数的含义是函数的瞬时变化率。观察下面的动画:曲边梯形可以想像成由函数
f
(
x
)
f(x)
f(x)的纵坐标编织成的。在
x
x
x时刻,比
x
x
x时刻之前所增加的面积正是
f
(
x
)
f(x)
f(x), 即瞬时变化率等于
f
(
x
)
f(x)
f(x), 用导数写出来就是下面的公式:
(
∫
a
x
f
(
u
)
d
u
)
′
=
f
(
x
)
.
\left(\int_a^xf(u)du\right)^\prime=f(x).
(∫axf(u)du)′=f(x).
03 生动的例子
仿照02中的动画,下面的例子可以做类似的解释:将图形的面积或体积看成时间 t t t的函数,在 t t t时刻编织成面积或体积的“最外层”,则面积函数或体积函数的导数表示 t t t时刻增加的面积或体积。
例1 如图5,如果圆的半径在 t t t时刻的长度等于 t t t, 则 t t t时刻时圆的面积为 π t 2 \pi t^2 πt2. 由于 ( π t 2 ) ′ = 2 π t (\pi t^2)^\prime=2\pi t (πt2)′=2πt,表明 t t t时刻比此时刻之前增加的面积正为 t t t时刻时的圆周长 2 π t . 2\pi t. 2πt.
例2 如图6,如果正方形的边长在
t
t
t时刻的长度等于
t
t
t, 则
t
t
t时刻时正方形的面积为
t
2
t^2
t2. 由于
(
t
2
)
′
=
2
t
,
(t^2)^\prime =2t,
(t2)′=2t, 表明
t
t
t时刻比此时刻之前增加的面积为
2
t
2t
2t,即第一象限的最大的正方形的两个边长。
例3 读者可以自行解释球的体积公式: V ( t ) ′ = 4 π t 2 V(t)^\prime =4\pi t^2 V(t)′=4πt2的含义。
更多内容,欢迎用微信扫描下图中的二维码,或搜索“大哉数学之为用”,免费关注微信公众号“大哉数学之为用”进行阅读。