Caffe学习系列(19): 绘制loss和accuracy曲线

如同前几篇的可视化,这里采用的也是jupyter notebook来进行曲线绘制。

 

In [1]:
#加载必要的库
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import sys,os,caffe
#设置当前目录
caffe_root = '/home/bnu/caffe/' 
sys.path.insert(0, caffe_root + 'python')
os.chdir(caffe_root)
         设置求解器,和c++/caffe一样,需要一个solver配置文件。
In [2]:
# set the solver prototxt
caffe.set_device(0)
caffe.set_mode_gpu()
solver = caffe.SGDSolver('examples/cifar10/cifar10_quick_solver.prototxt')
       如果不需要绘制曲线,只需要训练出一个caffemodel, 直接调用solver.solve()就可以了。如果要绘制曲线,就需要把迭代过程中的值
保存下来,因此不能直接调用solver.solve(), 需要迭代。在迭代过程中,每迭代200次测试一次
In [5]:
%%time
niter =4000
test_interval = 200
train_loss = np.zeros(niter)
test_acc = np.zeros(int(np.ceil(niter / test_interval)))

# the main solver loop
for it in range(niter):
    solver.step(1)  # SGD by Caffe
    
    # store the train loss
    train_loss[it] = solver.net.blobs['loss'].data
    solver.test_nets[0].forward(start='conv1')
    
    if it % test_interval == 0:
        acc=solver.test_nets[0].blobs['accuracy'].data
        print 'Iteration', it, 'testing...','accuracy:',acc
        test_acc[it // test_interval] = acc
 
Iteration 0 testing... accuracy: 0.10000000149
Iteration 200 testing... accuracy: 0.419999986887
Iteration 400 testing... accuracy: 0.479999989271
Iteration 600 testing... accuracy: 0.540000021458
Iteration 800 testing... accuracy: 0.620000004768
Iteration 1000 testing... accuracy: 0.629999995232
Iteration 1200 testing... accuracy: 0.649999976158
Iteration 1400 testing... accuracy: 0.660000026226
Iteration 1600 testing... accuracy: 0.660000026226
Iteration 1800 testing... accuracy: 0.670000016689
Iteration 2000 testing... accuracy: 0.709999978542
Iteration 2200 testing... accuracy: 0.699999988079
Iteration 2400 testing... accuracy: 0.75
Iteration 2600 testing... accuracy: 0.740000009537
Iteration 2800 testing... accuracy: 0.769999980927
Iteration 3000 testing... accuracy: 0.75
Iteration 3200 testing... accuracy: 0.699999988079
Iteration 3400 testing... accuracy: 0.740000009537
Iteration 3600 testing... accuracy: 0.72000002861
Iteration 3800 testing... accuracy: 0.769999980927
CPU times: user 41.7 s, sys: 54.2 s, total: 1min 35s
Wall time: 1min 18s
       绘制train过程中的loss曲线,和测试过程中的accuracy曲线



print test_acc
_, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.plot(np.arange(niter), train_loss)
ax2.plot(test_interval * np.arange(len(test_acc)), test_acc, 'r')
ax1.set_xlabel('iteration')
ax1.set_ylabel('train loss')
ax2.set_ylabel('test accuracy')
[ 0.1         0.41999999  0.47999999  0.54000002  0.62        0.63
  0.64999998  0.66000003  0.66000003  0.67000002  0.70999998  0.69999999
  0.75        0.74000001  0.76999998  0.75        0.69999999  0.74000001
  0.72000003  0.76999998]

Out[6]:
<matplotlib.text.Text at 0x7fd1297bfcd0>





在[2]时,出现The kernel appears to have died. It will restart automatically. 
把cifar10_test_lmdb、cifar10_train_lmdb及里面的文件都777开放权限了
在迭代的时候也会卡死,,修改迭代次数为2000







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值