使用Pytorch实现一个简单的Transformer - Transformer教程

最近几年来,Transformer模型在自然语言处理(NLP)领域大放异彩。无论是谷歌的BERT,还是OpenAI的GPT系列,Transformer架构都展示出了强大的性能。那么今天,我就带大家一步步用Pytorch实现一个简单的Transformer模型,让大家对这个火热的技术有一个更深入的理解。

了解Transformer的基本原理

首先,我们需要了解一下Transformer的基本原理。Transformer模型是由Vaswani等人在2017年提出的,主要用于替代传统的循环神经网络(RNN)和长短期记忆网络(LSTM)。它的核心思想是使用自注意力机制(Self-Attention)来处理输入序列,从而能够更好地捕捉长距离的依赖关系。

Transformer的核心组件

Transformer主要由两部分组成:编码器(Encoder)和解码器(Decoder)。每个编码器和解码器又由多个相同的层叠加而成。每一层主要包括以下几个模块:

  1. 多头自注意力机制(Multi-Head Self-Attention):用于捕捉输入序列中各个位置的依赖关系。
    1. 前馈神经网络(FNN):用于对每个位置进行非线性变换。
    1. 残差连接和层归一化(Residual Connection and Layer Normalization):帮助梯度传播,避免梯度消失问题。

用Pytorch实现Transformer

现在,让我们开始用Pytorch一步步实现一个简单的Transformer模型。首先,确保你已经安装了Pytorch,如果还没有,可以使用以下命令进行安装:

pip install torch

1. 导入必要的库

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np

2. 实现多头自注意力机制

多头自注意力机制是Transformer的核心组件之一,它能够让模型在不同的子空间进行注意力操作,从而捕捉到更多的信息。

class MultiHeadSelfAttention(nn.Module):
    def __init__(self, embed_size, heads):
            super(MultiHeadSelfAttention, self).__init__()
                    self.embed_size = embed_size
                            self.heads = heads
                                    self.head_dim = embed_size // heads
                                            
                                                    assert (self.head_dim * heads == embed_size), "Embedding size needs to be divisible by heads"
        self.values = nn.Linear(self.head_dim, embed_size, bias=False)
                self.keys = nn.Linear(self.head_dim, embed_size, bias=False)
                        self.queries = nn.Linear(self.head_dim, embed_size, bias=False)
                                self.fc_out = nn.Linear(embed_size, embed_size)
    def forward(self, values, keys, query, mask):
            N = query.shape[0]
                    value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]
        values = values.reshape(N, value_len, self.heads, self.head_dim)
                keys = keys.reshape(N, key_len, self.heads, self.head_dim)
                        queries = query.reshape(N, query_len, self.heads, self.head_dim)
        energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])
                
                        if mask is not None:
                                    energy = energy.masked_fill(mask == 0, float("-1e20"))
        attention = torch.softmax(energy / (self.embed_size ** (1 / 2)), dim=3)
        out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(N, query_len, self.embed_size)
                
                        out = self.fc_out(out)
                                
                                        return out
                                       

3. 实现前馈神经网络

前馈神经网络是Transformer中另一个重要组件,它能够对每个位置的表示进行非线性变换。

class FeedForward(nn.Module):
    def __init__(self, embed_size, ff_hidden):
            super(FeedForward, self).__init__()
                    self.fc1 = nn.Linear(embed_size, ff_hidden)
                            self.fc2 = nn.Linear(ff_hidden, embed_size)
    def forward(self, x):
            return self.fc2(torch.relu(self.fc1(x)))
            ```

4. 实现编码器层

编码器层由多头自注意力机制和前馈神经网络组成,同时加入了残差连接和层归一化。

class EncoderLayer(nn.Module):
    def __init__(self, embed_size, heads, ff_hidden, dropout):
            super(EncoderLayer, self).__init__()
                    self.norm1 = nn.LayerNorm(embed_size)
                            self.norm2 = nn.LayerNorm(embed_size)
                                    self.attention = MultiHeadSelfAttention(embed_size, heads)
                                            self.ff = FeedForward(embed_size, ff_hidden)
                                                    self.dropout = nn.Dropout(dropout)
    def forward(self, x, mask):
            attention = self.attention(x, x, x, mask)
                    x = self.dropout(self.norm1(attention + x))
                            forward = self.ff(x)
                                    x = self.dropout(self.norm2(forward + x))
                                            return x
                                            ```

5. 实现编码器

编码器由多个编码器层组成。

class Encoder(nn.Module):
    def __init__(self, src_vocab_size, embed_size, num_layers, heads, ff_hidden, dropout, max_length):
            super(Encoder, self).__init__()
                    self.embed_size = embed_size
                            self.word_embedding = nn.Embedding(src_vocab_size, embed_size)
                                    self.position_embedding = nn.Embedding(max_length, embed_size)
        self.layers = nn.ModuleList(
                    [EncoderLayer(embed_size, heads, ff_hidden, dropout) for _ in range(num_layers)]
                            )
                                    self.dropout = nn.Dropout(dropout)
    def forward(self, x, mask):
            N, seq_length = x.shape
                    positions = torch.arange(0, seq_length).expand(N, seq_length).to(x.device)
                            out = self.dropout(self.word_embedding(x) + self.position_embedding(positions))
                                    
                                            for layer in self.layers:
                                                        out = layer(out, mask)
        return out

6. 实现解码器层和解码器

解码器层的结构与编码器层类似,但多了一个额外的注意力机制,用于关注编码器的输出。

class DecoderLayer(nn.Module):
    def __init__(self, embed_size, heads, ff_hidden, dropout):
            super(DecoderLayer, self).__init__()
                    self.norm1 = nn.LayerNorm(embed_size)
                            self.norm2 = nn.LayerNorm(embed_size)
                                    self.norm3 = nn.LayerNorm(embed_size)
                                            
                                                    self.attention = MultiHeadSelfAttention(embed_size, heads)
                                                            self.transformer_block = MultiHeadSelfAttention(embed_size, heads)
                                                                    self.ff = FeedForward(embed_size, ff_hidden)
                                                                            self.dropout = nn.Dropout(dropout)
    def forward(self, x, value, key, src_mask, trg_mask):
            attention = self.attention(x, x, x, trg_mask)
                    query = self.dropout(self.norm1(attention + x))
                            attention = self.transformer_block(value, key, query, src_mask)
                                    out = self.dropout(self.norm2(attention + query))
                                            forward = self.ff(out)
                                                    out = self.dropout(self.norm3(forward + out))
                                                            return out
                                                            ```
```python
class Decoder(nn.Module):
    def __init__(self, trg_vocab_size, embed_size, num_layers, heads, ff_hidden, dropout, max_length):
            super(Decoder, self).__init__()
                    self.embed_size = embed_size
                            self.word_embedding = nn.Embedding(trg_vocab_size, embed_size)
                                    self.position_embedding = nn.Embedding(max_length, embed_size)
        self.layers = nn.ModuleList(
                    [DecoderLayer(embed_size, heads, ff_hidden, dropout) for _ in range(num_layers)]
                            )
                                    self.fc_out = nn.Linear(embed_size, trg_vocab_size)
                                            self.dropout = nn.Dropout(dropout)
    def forward(self, x, enc_out, src_mask, trg_mask):
            N, seq_length = x.shape
                    positions = torch.arange(0, seq_length).expand(N, seq_length).to(x.device)
                            x = self.dropout(self.word_embedding(x) + self.position_embedding(positions))
                                    
                                            for layer in self.layers:
                                                        x = layer(x, enc_out, enc_out, src_mask, trg_mask)
                                                                
                                                                        out = self.fc_out(x)
                                                                                
                                                                                        return out
                                                                                        

7. 实现完整的Transformer模型

最后,我们将编码器和解码器组合在一起,形成一个完整的Transformer模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值