Transformer模型的Pytorch实现

本文详细解析了Transformer模型在Pytorch中的实现,涉及模型整体构造、MultiHeadedAttention、PositionwiseFeedForward、PositionalEncoding、Encoder和Decoder层的编码与解码过程,以及Generator和Embeddings模块。
摘要由CSDN通过智能技术生成

Transformer的Pytorch实现有多个开源版本,基本大同小异,我参考的是这份英译中的工程。

为了代码讲解的直观性,还是先把Transformer的结构贴上来。

针对上述结构,我们从粗到细地来看一下模型的代码实现。

1. 模型整体构造 

class Transformer(nn.Module):
    def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
        super(Transformer, self).__init__()
        self.encoder = encoder    # 编码端,论文中包含了6个Encoder模块
        self.decoder = decoder    # 解码端,也是6个Decoder模块
        self.src_embed = src_embed  # 输入Embedding模块
        self.tgt_embed = tgt_embed  # 输出Embedding模块
        self.generator = generator  # 最终的Generator层,包括Linear+softmax

    def encode(self, src, src_mask):
        return self.encoder(self.src_embed(src), src_mask)

    def decode(self, memory, src_mask, tgt, tgt_mask):
        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)

    def forward(self, src, tgt, src_mask, tgt_mask):
        # encoder的结果作为decoder的memory参数传入,进行decode
        return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask)

通过make_model()函数对Transformer模型进行构造:

def make_model(src_vocab, tgt_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1):
    c = copy.deepcopy
    # 实例化Attention对象
    attn = MultiHeadedAttention(h, d_model).to(DEVICE)
    # 实例化FeedForward对象
    ff = PositionwiseFeedForward(d_model, d_ff, dropout).to(DEVICE)
    # 实例化PositionalEncoding对象
    position = PositionalEncoding(d_model, dropout).to(DEVICE)
    # 实例化Transformer模型对象
    model = Transformer(
        Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout).to(DEVICE), N).to(DEVICE),
        Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout).to(DEVICE), N).to(DEVICE),
        nn.Sequential(Embeddings(d_model, src_vocab).to(DEVICE), c(position)),
        nn.Sequential(Embeddings(d_model, tgt_vocab).to(DEVICE), c(position)),
        Generator(d_model, tgt_vocab)).to(DEVICE)

    # This was important from their code.
    # Initialize parameters with Glorot / fan_avg.
    for p in model.parameters():
        if p.dim() > 1:
            # 这里初始化采用的是nn.init.xavier_uniform
            nn.init.xavier_uniform_(p)
    return model.to(DEVICE)

那么,接下来,我们就对以上涉及到的模块进行一一实现。

2.  MutiHeadedAttention

MutiHeadedAttention()实现的是论文中的如下结构:

class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        super(MultiHeadedAttention, self).__init__()
        # h为head数量,保证可以整除,论文中该值是8
        assert d_model % h == 0
        # 得到一个head的attention表示维度,论文中是512/8=64
        self.d_k = d_model // h
        # head数量
        self.h = h
        # 定义4个全连接函数,供后续作为WQ,WK,WV矩阵和最后h个多头注意力矩阵concat之后进行变换的矩阵WO
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, query, key, value, mask=None):
        if mask is not None:
            mask = mask.unsqueeze(1)
        # query的第一个维度值为batch size
        nbatches = query.size(0)
        # 将embedding层乘以WQ,WK,WV矩阵(均为全连接)
        # 并将结果拆成h块,然后将第二个和第三个维度值互换
        query, key, value = [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
                             for l, x in zip(self.linears, (query, key, value))]
        # 调用attention函数计算得到h个注意力矩阵跟value的乘积,以及注意力矩阵
        x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout)
        # 将h个多头注意力矩阵concat起来(注意要先把h变回到第三维的位置)
        x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k)
        # 使用self.linears中构造的最后一个全连接函数来存放变换后的矩阵进行返回
        return self.linears[-1](x)

其中,主体attention函数的定义在该模块之外,主要实现下面这个结构,当然,是批量实现h个这样的结构:

def attention(query, key, value, mask=None, dropout=None):
    # 将query矩阵的最后一个维度值作为d_k
    d_k = query.size(-1)

    # 将key的最后两个维度互换(转置),才能与query矩阵相乘,乘完了还要除以d_k开根号
    scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)

    # 如果存在要进行mask的内容,则将那些为0的部分替换成一个很大的负数
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)

    # 将mask后的attention矩阵按照最后一个维度进行softmax,归一化到0~1
    p_attn = F.softmax(scores, dim=-1)

    # 如果dropout参数设置为非空,则进行dropout操作
    if dropout is not None:
        p_attn = dropout(p_attn)
    # 最后返回注意力矩阵跟value的乘积,以及注意力矩阵
    return torch.matmul(p_attn, value), p_attn

3. PositionwiseFeedForward

接下来,我们按照make_model()函数中的顺序,来看看PositionwiseFeedForward模块。该模块相对较简单,公式如下:

 代码如下:

class PositionwiseFeedForward(nn.Module):
    def __init__(self, d_model, d_ff, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.w_2(self.dropout(F.relu(self.w_1(x))))

4.  PositionalEncoding

位置编码在论文中的实现公式如下: 

代码:

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        # 初始化一个size为 max_len(设定的最大长度)×embedding维度 的全零矩阵
        # 来存放所有小于这个长度位置对应的positional embedding
        pe = torch.zeros(max_len, d_model, device=DEVICE)
        # 生成一个位置下标的tensor矩阵(每一行都是一个位置下标)
        """
        形式如:
        tensor([[0.],
                [1.],
                [2.],
                [3.],
                [4.],
                ...])
        """
        position = torch.arange(0., max_len, device=DEVICE).unsqueeze(1)
        # 这里幂运算太多,我们使用exp和log来转换实现公式中pos下面要除以的分母(由于是分母,要注意带负号),已经忘记中学对数操作的同学请自行补课哈
        div_term = torch.exp(torch.arange(0., d_model, 2, device=DEVICE) * -(math.log(10000.0) / d_model))

        # 根据公式,计算各个位置在各embedding维度上的位置纹理值,存放到pe矩阵中
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        # 加1个维度,使得pe维度变为:1×max_len×embedding维度
        # (方便后续与一个batch的句子所有词的embedding批量相加)
        pe = pe.unsqueeze(0)
        # 将pe矩阵以持久的buffer状态存下(不会作为要训练的参数)
        self.register_buffer('pe', pe)

    def forward(self, x):
        # 将一个batch的句子所有词的embedding与已构建好的positional embeding相加
        # (这里按照该批次数据的最大句子长度来取对应需要的那些positional embedding值)
        x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False)
        return self.dropout(x)

5. Encoder

make_model()函数中的Encoder是包含了整个Encoder端的模块,包括6个Encoder Layer。

class Encoder(nn.Module):
    # layer = EncoderLayer
    # N = 6
    def __init__(self, layer, N):
        super(Encoder, self).__init__()
        # 复制N个encoder layer
        self.layers = clones(layer, N)
        # Layer Norm
        self.norm = LayerNorm(layer.size)

    def forward(self, x, mask):
        """
        使用循环连续eecode N次(这里为6次)
        这里的Eecoderlayer会接收一个对于输入的attention mask处理
        """
        for layer in self.layers:
            x = layer(x, mask)
        return self.norm(x)

以上代码中,在Encoder侧放置N=6个Encoder Layer,每个Encoder Layer的实现如下:

class EncoderLayer(nn.Module):
    def __init__(self, size, self_attn, feed_forward, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        # SublayerConnection的作用就是把multi和ffn连在一起
        # 只不过每一层输出之后都要先做Layer Norm再残差连接
        self.sublayer = clones(SublayerConnection(size, dropout), 2)
        # d_model
        self.size = size

    def forward(self, x, mask):
        # 将embedding层进行Multi head Attention
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
        # 注意到attn得到的结果x直接作为了下一层的输入
        return self.sublayer[1](x, self.feed_forward)

上面的sublayer其实就是残差连接,但是跟架构图上有一点区别,是先做的LayerNorm,再做Residual,所以在整个Encoder最后,又加了一次LayerNorm,见本小节最上面一段代码。

class SublayerConnection(nn.Module):
    """
    SublayerConnection的作用就是把Multi-Head Attention和Feed Forward层连在一起
    只不过每一层输出之后都要先做Layer Norm再残差连接
    sublayer是lambda函数
    """
    def __init__(self, size, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        # 返回Layer Norm和残差连接后结果
        return x + self.dropout(sublayer(self.norm(x)))

6. Decoder

Decoder的结构与Encoder相似,但在每个Decoder Layer上多了一个残差连接的子层;并且需要用到Encoder的输出,以及Mask操作。

class Decoder(nn.Module):
    def __init__(self, layer, N):
        super(Decoder, self).__init__()
        # 复制N个encoder layer
        self.layers = clones(layer, N)
        # Layer Norm
        self.norm = LayerNorm(layer.size)

    def forward(self, x, memory, src_mask, tgt_mask):
        """
        使用循环连续decode N次(这里为6次)
        这里的Decoderlayer会接收一个对于输入的attention mask处理
        和一个对输出的attention mask + subsequent mask处理
        """
        for layer in self.layers:
            x = layer(x, memory, src_mask, tgt_mask)
        return self.norm(x)

layers中包括N=6个Decoder Layer,每个Decoder Layer的实现如下:

class DecoderLayer(nn.Module):
    def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
        super(DecoderLayer, self).__init__()
        self.size = size
        # Self-Attention
        self.self_attn = self_attn
        # 与Encoder传入的Context进行Attention
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 3)

    def forward(self, x, memory, src_mask, tgt_mask):
        # 用m来存放encoder的最终hidden表示结果
        m = memory

        # Self-Attention:注意self-attention的q,k和v均为decoder hidden
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
        # Context-Attention:注意context-attention的q为decoder hidden,而k和v为encoder hidden
        x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
        return self.sublayer[2](x, self.feed_forward)

7. Generator

Generator就是我们上一篇文章所讲的The Final Linear and Softmax Layer。它的作用是,先把Decoder的输出结果映射到词典大小的变量,再进行log_softmax操作计算出词典中各词的概率分布,从而为输出词语的选择提供依据(完整预测流程准备后面再开一篇讲)。

class Generator(nn.Module):
    # vocab: tgt_vocab
    def __init__(self, d_model, vocab):
        super(Generator, self).__init__()
        # decode后的结果,先进入一个全连接层变为词典大小的向量
        self.proj = nn.Linear(d_model, vocab)

    def forward(self, x):
        # 然后再进行log_softmax操作(在softmax结果上再做多一次log运算)
        return F.log_softmax(self.proj(x), dim=-1)

8. Embedding

最后,我们来看一下Embedding。论文中对Embedding的描述较简单,只有如下寥寥几句话,可能因为是在翻译领域比较成熟的技术了吧。

代码中对该功能的实现如下:

class Embeddings(nn.Module):
    def __init__(self, d_model, vocab):
        super(Embeddings, self).__init__()
        # Embedding层
        self.lut = nn.Embedding(vocab, d_model)
        # Embedding维数
        self.d_model = d_model

    def forward(self, x):
        # 返回x对应的embedding矩阵(需要乘以math.sqrt(d_model))
        return self.lut(x) * math.sqrt(self.d_model)

 好了,今天的解读就先到这里。有更多补充内容,见后续更新。

  • 17
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
Transformer发轫于NLP(自然语言处理),并跨界应用到CV(计算机视觉)领域。目前已成为深度学习的新范式,影响力和应用前景巨大。  本课程对Transformer的原理和PyTorch代码进行精讲,来帮助大家掌握其详细原理和具体实现。  原理精讲部分包括:注意力机制和自注意力机制、Transformer的架构概述、Encoder的多头注意力(Multi-Head Attention)、Encoder的位置编码(Positional Encoding)、残差链接、层规范化(Layer Normalization)、FFN(Feed Forward Network)、Transformer的训练及性能、Transformer的机器翻译工作流程。   代码精讲部分使用Jupyter Notebook对TransformerPyTorch代码进行逐行解读,包括:安装PyTorchTransformer的Encoder代码解读、Transformer的Decoder代码解读、Transformer的超参设置代码解读、Transformer的训练示例(人为随机数据)代码解读、Transformer的训练示例(德语-英语机器翻译)代码解读。相关课程: 《Transformer原理与代码精讲(PyTorch)》https://edu.csdn.net/course/detail/36697《Transformer原理与代码精讲(TensorFlow)》https://edu.csdn.net/course/detail/36699《ViT(Vision Transformer)原理与代码精讲》https://edu.csdn.net/course/detail/36719《DETR原理与代码精讲》https://edu.csdn.net/course/detail/36768《Swin Transformer实战目标检测:训练自己的数据集》https://edu.csdn.net/course/detail/36585《Swin Transformer实战实例分割:训练自己的数据集》https://edu.csdn.net/course/detail/36586《Swin Transformer原理与代码精讲》 https://download.csdn.net/course/detail/37045
### 回答1: Transformer是一种基于自注意力机制的神经网络模型,用于处理序列到序列的任务,如机器翻译、文本摘要等。PyTorch是一个流行的深度学习框架,提供了实现Transformer模型的工具和库。使用PyTorch实现Transformer模型可以方便地进行模型训练和调试,并且可以利用PyTorch的自动求导功能来优化模型参数。 ### 回答2: Transformer是一种用于序列建模的深度学习模型,它可以用于自然语言处理中的机器翻译、文本分类、语言模型等任务。它的设计思路是利用注意力机制来捕捉输入序列之间的关系。 PyTorch是一种基于Python的优秀的深度学习框架。在PyTorch中,可以使用预定义的模型类来实现Transformer模型Transformer模型PyTorch框架中实现的方法主要分为两种:自定义层和PyTorch自带模块。 自定义层 在PyTorch中,借助于nn.Module和nn.Parameter类,可以轻松地定义自己的模型层。下面是一个例子: ``` import torch import torch.nn as nn import torch.nn.functional as F class MultiHeadAttention(nn.Module): def __init__(self, d_model, heads): super().__init__() self.d_model = d_model self.heads = heads assert d_model % heads == 0 self.d_k = d_model // heads self.q_linear = nn.Linear(d_model, d_model) self.v_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model) self.out = nn.Linear(d_model, d_model) def forward(self, q, k, v, mask=None): bs = q.size(0) q = self.q_linear(q).view(bs, -1, self.heads, self.d_k) k = self.k_linear(k).view(bs, -1, self.heads, self.d_k) v = self.v_linear(v).view(bs, -1, self.heads, self.d_k) q = q.permute(0, 2, 1, 3) k = k.permute(0, 2, 1, 3) v = v.permute(0, 2, 1, 3) scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.d_k, dtype=torch.float32)) if mask is not None: mask = mask.unsqueeze(1).repeat(1, self.heads, 1, 1) scores = scores.masked_fill(mask == 0, -1e9) scores = F.softmax(scores, dim=-1) attention = torch.matmul(scores, v) attention = attention.permute(0, 2, 1, 3).contiguous() attention = attention.view(bs, -1, self.heads * self.d_k) return self.out(attention) ``` 此处定义了一个MultiHeadAttention类,并在初始化函数中定义各个线性层,而forward函数则为模型的前向传递代码。 其中,MultiHeadAttention中的q、k、v分别表示查询、键和值的输入张量,mask为特殊的掩码,用于限制注意力机制只看前面的信息。在forward函数中,我们首先把输入张量传递到各自的线性层中,然后按照头数分割,为每个头初始化查询、键和值(使用view函数),然后使用softmax归一化注意力分布,最后用权重矩阵与值矩阵的乘积形成输出。最后我们将头合并,返回输出张量。 这样,我们就可以通过自定义层的方式来定义Transformer模型。需要注意的是,在整个模型中,每一个自定义层应该加一次Layer Normalization。 使用PyTorch自带模块 除了使用自定义层,PyTorch还提供了一些预定义的模块类,用于模型的构建。下面是一个使用PyTorch自带模块搭建的Transformer模型: ``` import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class MultiHeadAttention(nn.Module): def __init__(self, d_model, heads): super().__init__() self.d_model = d_model self.heads = heads assert d_model % heads == 0 self.d_k = d_model // heads self.qkv = nn.Linear(d_model, 3 * d_model) self.out = nn.Linear(d_model, d_model) def forward(self, q, k, v, mask=None): bs = q.size(0) qkv = self.qkv(torch.cat([q, k, v], dim=-1)) qkv = qkv.view(bs, -1, self.heads, 3 * self.d_k).transpose(1, 2) q, k, v = qkv[:, :, :, :self.d_k], qkv[:, :, :, self.d_k:2*self.d_k], qkv[:, :, :, 2*self.d_k:] scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.d_k, dtype=torch.float32)) if mask is not None: mask = mask.unsqueeze(1).repeat(1, self.heads, 1, 1) scores = scores.masked_fill(mask == 0, -1e9) scores = F.softmax(scores, dim=-1) attention = torch.matmul(scores, v) attention = attention.transpose(1, 2).contiguous().view(bs, -1, self.heads * self.d_k) return self.out(attention) class PositionwiseFeedForward(nn.Module): def __init__(self, d_model, hidden_dim): super().__init__() self.fc1 = nn.Linear(d_model, hidden_dim) self.fc2 = nn.Linear(hidden_dim, d_model) def forward(self, x): return self.fc2(F.relu(self.fc1(x))) class Normalization(nn.Module): def __init__(self, d_model): super().__init__() self.d_model = d_model self.alpha = nn.Parameter(torch.ones(self.d_model)) self.bias = nn.Parameter(torch.zeros(self.d_model)) def forward(self, x): norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) / (x.std(dim=-1, keepdim=True) + 1e-6) + self.bias return norm class EncoderLayer(nn.Module): def __init__(self, d_model, heads, hidden_dim): super().__init__() self.attention = MultiHeadAttention(d_model=d_model, heads=heads) self.norm1 = Normalization(d_model=d_model) self.dropout1 = nn.Dropout(0.5) self.feed_forward = PositionwiseFeedForward(d_model=d_model, hidden_dim=hidden_dim) self.norm2 = Normalization(d_model=d_model) self.dropout2 = nn.Dropout(0.5) def forward(self, x, mask=None): x2 = self.attention(x, x, x, mask=mask) x = self.norm1(x + self.dropout1(x2)) x2 = self.feed_forward(x) x = self.norm2(x + self.dropout2(x2)) return x class Encoder(nn.Module): def __init__(self, d_model, heads, hidden_dim, num_layers): super().__init__() self.layers = nn.ModuleList([ EncoderLayer(d_model=d_model, heads=heads, hidden_dim=hidden_dim) for _ in range(num_layers) ]) def forward(self, src, mask=None): for layer in self.layers: src = layer(src, mask=mask) return src class DecoderLayer(nn.Module): def __init__(self, d_model, heads, hidden_dim): super().__init__() self.attention1 = MultiHeadAttention(d_model=d_model, heads=heads) self.norm1 = Normalization(d_model=d_model) self.dropout1 = nn.Dropout(0.5) self.attention2 = MultiHeadAttention(d_model=d_model, heads=heads) self.norm2 = Normalization(d_model=d_model) self.dropout2 = nn.Dropout(0.5) self.feed_forward = PositionwiseFeedForward(d_model=d_model, hidden_dim=hidden_dim) self.norm3 = Normalization(d_model=d_model) self.dropout3 = nn.Dropout(0.5) def forward(self, x, memory, src_mask=None, tgt_mask=None): x2 = self.attention1(x, x, x, mask=tgt_mask) x = self.norm1(x + self.dropout1(x2)) x2 = self.attention2(x, memory, memory, mask=src_mask) x = self.norm2(x + self.dropout2(x2)) x2 = self.feed_forward(x) x = self.norm3(x + self.dropout3(x2)) return x class Decoder(nn.Module): def __init__(self, d_model, heads, hidden_dim, num_layers): super().__init__() self.layers = nn.ModuleList([ DecoderLayer(d_model=d_model, heads=heads, hidden_dim=hidden_dim) for _ in range(num_layers) ]) def forward(self, tgt, memory, src_mask=None, tgt_mask=None): for layer in self.layers: tgt = layer(tgt, memory, src_mask=src_mask, tgt_mask=tgt_mask) return tgt class Transformer(nn.Module): def __init__(self, d_model, heads, hidden_dim, num_layers, src_vocab_size, tgt_vocab_size, max_length): super().__init__() self.encoder = Encoder(d_model=d_model, heads=heads, hidden_dim=hidden_dim, num_layers=num_layers) self.decoder = Decoder(d_model=d_model, heads=heads, hidden_dim=hidden_dim, num_layers=num_layers) self.src_embedding = nn.Embedding(src_vocab_size, d_model) self.tgt_embedding = nn.Embedding(tgt_vocab_size, d_model) self.out = nn.Linear(d_model, tgt_vocab_size) self.max_length = max_length def make_src_mask(self, src): src_mask = (src != 0) return src_mask def make_tgt_mask(self, tgt): tgt_pad_mask = (tgt != 0) tgt_len = tgt.shape[1] tgt_sub_mask = torch.tril(torch.ones((tgt_len, tgt_len))) tgt_mask = tgt_pad_mask.unsqueeze(1) & tgt_sub_mask return tgt_mask def forward(self, src, tgt): src_mask = self.make_src_mask(src) tgt_mask = self.make_tgt_mask(tgt) src_embedded = self.src_embedding(src) tgt_embedded = self.tgt_embedding(tgt) memory = self.encoder(src_embedded, mask=src_mask) output = self.decoder(tgt_embedded, memory, src_mask=src_mask, tgt_mask=tgt_mask) output = self.out(output) return output ``` 与自定义层类似,在PyTorch实现Transformer模型也借助于nn.Module和nn.Parameter类定义自己的模型层。上述代码中,分别定义了MultiHeadAttention、PositionwiseFeedForward、Normalization、EncoderLayer、Encoder、DecoderLayer、DecoderTransformer八个类,一共分为Encoder、DecoderTransformer三部分。 对于Transformer模型而言,Encoder有若干个EncoderLayer层,每个EncoderLayer层中有一个MultiHeadAttention层和一个PositionwiseFeedForward层,而Decoder中也有若干个DecoderLayer层,每个DecoderLayer层中有两个MultiHeadAttention层和一个PositionwiseFeedForward层。在Encoder和Decoder的代码中,还分别添加了make_src_mask和make_tgt_mask函数,用于生成掩码。 最后,我们使用Transformer类将Encoder和Decoder组合在一起,并实现整个模型的前向传递。在前向传递的过程中,我们需要先通过词向量嵌入层将输入编码,然后在Encoder中将编码的输入信息进行处理,并在Decoder中将编码信息解码,最终通过输出层得到输出。整个模型都是基于PyTorch的自带模块组合而成的。 综上所述,通过自定义层或者利用PyTorch自带模块,我们可以很容易地实现Transformer模型,并使用PyTorch框架进行训练和预测等操作。 ### 回答3: transformer是自然语言处理领域一种重要的模型,它在机器翻译、文本生成、文本分类等任务中都有广泛的应用。PyTorch是一种流行的深度学习框架,它能够帮助我们更加方便地实现各种深度学习算法,包括transformertransformer模型的核心是自注意力机制,它可以让模型在处理序列数据时能够自动地关注到重要的信息。具体来说,transformer的自注意力机制包含了三个部分:查询(Q)、键(K)和值(V)。每个部分都是向量,其中查询向量表示我们希望关注到的信息,而键向量和值向量则表示序列中的每个位置都包含的信息。通过计算查询向量和所有键向量之间的相似度,我们可以得到一个权重向量,用来表示每个位置对于查询向量的重要程度。然后,我们可以将重要程度和对应位置的值向量加权求和,得到自注意力机制的输出。 在PyTorch实现transformer模型,我们可以借助官方提供的transformer模块,只需要定义好模型的输入、输出、层数等超参数,就能够很方便地搭建一个transformer模型。下面是一个实现transformer模型的样例代码: import torch.nn as nn import torch.nn.functional as F from torch.nn import TransformerEncoder, TransformerEncoderLayer class TransformerModel(nn.Module): def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5): super(TransformerModel, self).__init__() self.pos_encoder = PositionalEncoding(ninp, dropout) encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout) self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers) self.encoder = nn.Embedding(ntoken, ninp) self.ninp = ninp self.decoder = nn.Linear(ninp, ntoken) self.init_weights() def init_weights(self): initrange = 0.1 self.encoder.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, src, src_mask): src = self.encoder(src) * math.sqrt(self.ninp) src = self.pos_encoder(src) output = self.transformer_encoder(src, src_mask) output = self.decoder(output) return output 其中,我们使用了PositionalEncoding模块来对输入的序列进行位置编码,EncoderLayer模块实现transformer的一个编码层,Encoder模块则包含了多个编码层,组成了整个transformer模型。在forward函数中,我们首先对输入进行嵌入和位置编码操作,然后使用transformer编码器进行编码,最后通过线性层得到模型的输出。 总之,PyTorch提供了方便的transformer模块实现方式,我们只需要定义好模型的超参数和组件,就可以快速搭建出一个强大的transformer模型来处理不同的NLP任务。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值