PyTorch学习之六个学习率调整策略

本文详细介绍了PyTorch中学习率调整的各种策略,包括等间隔调整、按需调整、指数衰减、余弦退火、自适应调整及自定义调整等六种方法,每种方法的参数设置及应用场景均有详细说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PyTorch学习率调整策略通过torch.optim.lr_scheduler接口实现。PyTorch提供的学习率调整策略分为三大类,分别是

a. 有序调整:等间隔调整(Step),按需调整学习率(MultiStep),指数衰减调整(Exponential)和 余弦退火CosineAnnealing。
b. 自适应调整:自适应调整学习率 ReduceLROnPlateau。
c. 自定义调整:自定义调整学习率 LambdaLR。

1 等间隔调整学习率 StepLR

等间隔调整学习率,调整倍数为 gamma 倍,调整间隔为 step_size。间隔单位是step。需要注意的是, step 通常是指 epoch,不要弄成 iteration 了。

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

参数:

step_size(int)- 学习率下降间隔数,若为 30,则会在 30、 60、 90…个 step 时,将学习率调整为 lr*gamma。
gamma(float)- 学习率调整倍数,默认为 0.1 倍,即下降 10 倍。
last_epoch(int)- 上一个 epoch 数,这个变量用来指示学习率是否需要调整。当last_epoch 符合设定的间隔时,就会对学习率进行调整。当为-1 时,学习率设置为初始值。

2 按需调整学习率 MultiStepLR

按设定的间隔调整学习率。这个方法适合后期调试使用,观察 loss 曲线,为每个实验定制学习率调整时机。

torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)

参数:

milestones(list)- 一个 list,每一个元素代表何时调整学习率, list 元素必须是递增的。如 milestones=[30,80,120]
gamma(float)- 学习率调整倍数,默认为 0.1 倍,即下降 10 倍。

3 指数衰减调整学习率 ExponentialLR

按指数衰减调整学习率,调整公式: l r = l r ∗ g a m m a ∗ ∗ e p o c h lr = lr * gamma**epoch lr=lrgammaepoch

torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=-1)

参数:

gamma- 学习率调整倍数的底,指数为 epoch,即 gamma**epoch

4 余弦退火调整学习率 CosineAnnealingLR

以余弦函数为周期,并在每个周期最大值时重新设置学习率。以初始学习率为最大学习率,以 2 ∗ T m a x 2*Tmax 2Tmax 为周期,在一个周期内先下降,后上升。

torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)

参数:

T_max(int)- 一次学习率周期的迭代次数,即 T_max 个 epoch 之后重新设置学习率。
eta_min(float)- 最小学习率,即在一个周期中,学习率最小会下降到 eta_min,默认值为 0。

5 自适应调整学习率 ReduceLROnPlateau

当某指标不再变化(下降或升高),调整学习率,这是非常实用的学习率调整策略。
例如,当验证集的 loss 不再下降时,进行学习率调整;或者监测验证集的 accuracy,当accuracy 不再上升时,则调整学习率。

torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)

参数:

mode(str)- 模式选择,有 min 和 max 两种模式, min 表示当指标不再降低(如监测loss), max 表示当指标不再升高(如监测 accuracy)。
factor(float)- 学习率调整倍数(等同于其它方法的 gamma),即学习率更新为 lr = lr * factor
patience(int)- 忍受该指标多少个 step 不变化,当忍无可忍时,调整学习率。
verbose(bool)- 是否打印学习率信息, print(‘Epoch {:5d}: reducing learning rate of group {} to {:.4e}.’.format(epoch, i, new_lr))
threshold_mode(str)- 选择判断指标是否达最优的模式,有两种模式, rel 和 abs。
当 threshold_mode == rel,并且 mode == max 时, dynamic_threshold = best * ( 1 +threshold );
当 threshold_mode == rel,并且 mode == min 时, dynamic_threshold = best * ( 1 -threshold );
当 threshold_mode == abs,并且 mode== max 时, dynamic_threshold = best + threshold ;
当 threshold_mode == rel,并且 mode == max 时, dynamic_threshold = best - threshold;

threshold(float)- 配合 threshold_mode 使用。
cooldown(int)- “冷却时间“,当调整学习率之后,让学习率调整策略冷静一下,让模型再训练一段时间,再重启监测模式。
min_lr(float or list)- 学习率下限,可为 float,或者 list,当有多个参数组时,可用 list 进行设置。
eps(float)- 学习率衰减的最小值,当学习率变化小于 eps 时,则不调整学习率。

6 自定义调整学习率 LambdaLR

为不同参数组设定不同学习率调整策略。调整规则为,

l r = b a s e _ l r ∗ l m b d a ( s e l f . l a s t _ e p o c h ) lr = base\_lr *lmbda(self.last\_epoch) lr=base_lrlmbda(self.last_epoch)

fine-tune 中十分有用,我们不仅可为不同的层设定不同的学习率,还可以为其设定不同的学习率调整策略。

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)

参数:

lr_lambda(function or list)- 一个计算学习率调整倍数的函数,输入通常为 step,当有多个参数组时,设为 list。

### 关于余弦退火学习率策略的相关研究 余弦退火学习率调整策略是一种广泛应用于深度学习模型优化的技术。它通过周期性地改变学习率来帮助模型跳出局部最优解并加速收敛过程。尽管当前提供的引用并未直接提及余弦退火学习率的具体实现细节,但可以从其他相关领域推导出可能的研究方向。 #### 1. 学习率衰减机制的背景 在深度神经网络训练过程中,动态调整学习率是一项关键技术。一种常见的方法是基于时间步长或损失函数的变化速率来进行自适应调节[^2]。然而,这种方法可能会导致学习率过早下降或者无法充分探索参数空间。因此,研究人员提出了多种改进方案,其中就包括余弦退火学习率策略。 #### 2. 余弦退火的核心思想 余弦退火学习率策略的主要特点是按照余弦曲线的形式逐渐降低初始设定的学习率值,并允许其在一个范围内波动。这种设计不仅有助于平滑梯度更新过程中的剧烈变化,还能促进全局搜索能力与局部精细化调优之间的平衡。具体而言,在每次完整的训练周期结束后,新的最大最小边界会被重新定义以便继续执行后续迭代操作直到满足终止条件为止。 以下是实现该算法的一个简单Python代码片段: ```python import math def cosine_annealing_lr(current_epoch, max_epochs, base_lr, min_lr): """Compute the learning rate using a cosine annealing schedule.""" lr_range = (base_lr - min_lr) / 2 cos_value = (1 + math.cos(math.pi * current_epoch / max_epochs)) / 2 new_lr = min_lr + lr_range * cos_value return new_lr ``` #### 3. 应用实例分析 虽然上述提到的方法侧重于解决特定任务下的性能瓶颈问题,但在实际应用当中也可以发现类似的思路被广泛应用到了诸如图像分类、目标检测等多个计算机视觉子领域之中。例如,在某些先进的人脸识别框架里同样融入了此类技术以提升最终效果表现水平[^1]。 综上所述,对于希望深入了解cosine annealing learning rate strategy 的读者来说,除了查阅官方文档外还可以关注那些采用了相似原理构建而成的经典案例作为参考资料进一步学习探讨。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mingo_敏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值