华为OD机考:统一考试 D卷 + C卷 + B卷 +A卷
真题目录:华为OD机考机试 真题目录(C卷 + D卷 + B卷 + A卷) + 考点说明
题目描述
园区某部门举办了Family Day,邀请员工及其家属参加;
将公司园区视为一个矩形,起始园区设置在左上角,终点园区设置在右下角;
家属参观园区时,只能向右和向下园区前进,求从起始园区到终点园区会有多少条不同的参观路径。
输入描述
第一行为园区的长和宽;
后面每一行表示该园区是否可以参观,0表示可以参观,1表示不能参观
输出描述
输出为不同的路径数量
用例
输入 | 3 3 0 0 0 0 1 0 0 0 0 |
---|---|
输出 | 2 |
说明 | 无 |
解题思路
这个问题是一个典型的动态规划问题,主要解决的是在一个二维网格中,从左上角到右下角的所有可能路径的数量,其中一些单元格可能是不可达的。
动态规划的基本思想是将一个复杂的问题分解成一系列简单的子问题,并存储子问题的解,以便后续需要时直接使用,而不是重新计算。这种方法通过避免重复计算同一个子问题来节省计算时间。
在这个问题中,我们定义dp[i][j]为从起始点到网格中位置(i,j)的所有可能路径的数量。我们需要找到一个递推关系,用更小的子问题的解来表达dp[i][j]。
这里的递推关系是基于这样一个事实:到达一个特定单元格的路径只能来自其左边的单元格或其上边的单元格。因此,到达该单元格的所有可能路径的数量就是到达其左边单元格的所有可能路径的数量和到达其上边单元格的所有可能路径的数量的和。这就是我们的