YOLOv8目标检测创新改进与实战案例专栏
专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLOv8基础解析+创新改进+实战案例
介绍

摘要
卷积神经网络(CNNs)通过提取空间特征彻底改变了图像分类,并在基于视觉的任务中实现了最先进的准确性。提出的Squeeze-and-Excitation网络模块收集输入的通道表示。多层感知器(MLP)从数据中学习全局表示,并在大多数图像分类模型中用于学习图像的提取特征。本文中,我们引入了一种新型的聚合多层感知器,一个多分支密集层,嵌入到Squeeze-and-Excitation残差模块中,旨在超越现有架构的性能。我们的方法结合了Squeeze-and-Excitation网络模块和密集层。这种融合增强了网络捕捉通道模式和全局知识的能力,从而提高了特征表示。与SENet相比,所提出的模型参数增加可以忽略不计。我们在基准数据集上进行了广泛的实验,以验证模型并与已建立的架构进行比较。实验结果表明,所提出模型在分类准确性上有显著提高。
文章链接
论文地址:论文地址
代码地址:代码地址
参考代码:代码地址
基本原理
SENetV2是一种图像分类模型,其核心特征是引入了聚合稠密层(Aggregated Dense Layer)用于通道和全局表示,是一种结合了Squeeze-and-Excitation(SE)模块和密集层的图像分类模型。该模型旨在通过增强特征表示来提高图像分类性能。SENet V2的核心思想是通过对通道特征和全局特征进行重新校准和激活,从而使网络更加专注于关键特征,提高分类准确性。
SENet V2的关键特点包括:
- Squeeze-and-Excitation(SE)模块:SE模块通过对通道特征进行重新校准,使网络能够更好地捕获关键特征。在SE模块中,通过全局信息来动态调整通道特征的重要性,从而提高网络的表达能力。
- 密集层:SENet V2引入了密集层,用于进
本文介绍了将SENetV2的聚合稠密层与SE模块结合应用于YOLOv8,以增强特征表示和目标检测性能。SENetV2通过Squeeze-and-Excitation(SE)模块与密集层优化通道和全局特征,提高分类准确性。文章详细阐述了SENetV2的结构、核心代码以及如何在YOLOv8中引入和配置。
订阅专栏 解锁全文
1953

被折叠的 条评论
为什么被折叠?



