冈萨雷斯:数字图像处理(二):第二章数字图形基础(上)——图像内插,相邻像素,邻接性,距离度量

本文介绍了数字图像处理中的图像内插技术,包括最近邻内插和双线性内插,并详细阐述了相邻像素的概念,4邻接与8邻接的邻接性以及不同邻接性的定义。同时,简要提及了距离度量的重要性。
摘要由CSDN通过智能技术生成

1.图像内插:从根本上看,内插是用已知数据来估计未知位置的数值的处理。
例如,假设一幅大小为500x500像素的图像要放大1.5倍到750x750像素,一种简单的放大方法是创建一个假想的750x750网格,它与原始图像有相同的间隔,然后将其收缩,使它准确的与原图像匹配。显然,收缩后的750x750网格的像素间隔要小于原图像的像素间隔,为了对覆盖的每一个点赋以灰度值,我们在原图像中寻找最接近的像素,并把该像素的灰度赋给750x750网格中的新像素。当我们完成对网格中覆盖的所有点的灰度赋值后,就把图像扩展到原来规定的大小,得到放大后的图像
上面描述的方法我们称之为最近邻内插法
该方法简单,但会产生某些直边缘的严重失真,所以并不常用,常用的是双线性内插
在该方法中,我们用4个最近邻去估计给定位置的灰度。令(x,y)为我们想要赋以灰度值的位置,并令v(x,y)表示灰度值,对于双线性内插来说,赋值有下面公式得到:v(x,y)=ax+by+cxy+d。其中,4个系数可由4个用(x,y)点最近邻点写出的未知方程确定。
对于双线性更直观的描述,参见博客(http://blog.csdn.net/xbinworld https://blog.csdn.net/xbinworld/article/details/65660665)

2.相邻像素
位于坐标(x,y)处的像素p有4个水平和垂直的相邻像素,其坐标为(x+1,y),(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值