1.图像内插:从根本上看,内插是用已知数据来估计未知位置的数值的处理。
例如,假设一幅大小为500x500像素的图像要放大1.5倍到750x750像素,一种简单的放大方法是创建一个假想的750x750网格,它与原始图像有相同的间隔,然后将其收缩,使它准确的与原图像匹配。显然,收缩后的750x750网格的像素间隔要小于原图像的像素间隔,为了对覆盖的每一个点赋以灰度值,我们在原图像中寻找最接近的像素,并把该像素的灰度赋给750x750网格中的新像素。当我们完成对网格中覆盖的所有点的灰度赋值后,就把图像扩展到原来规定的大小,得到放大后的图像
上面描述的方法我们称之为最近邻内插法。
该方法简单,但会产生某些直边缘的严重失真,所以并不常用,常用的是双线性内插
在该方法中,我们用4个最近邻去估计给定位置的灰度。令(x,y)为我们想要赋以灰度值的位置,并令v(x,y)表示灰度值,对于双线性内插来说,赋值有下面公式得到:v(x,y)=ax+by+cxy+d。其中,4个系数可由4个用(x,y)点最近邻点写出的未知方程确定。
对于双线性更直观的描述,参见博客(http://blog.csdn.net/xbinworld https://blog.csdn.net/xbinworld/article/details/65660665)
2.相邻像素
位于坐标(x,y)处的像素p有4个水平和垂直的相邻像素,其坐标为(x+1,y),(x