一文看懂YOLOv1

YOLO(You Only Look Once)是一种快速的目标检测算法,以实时速度处理图像并预测物体。YOLOv1通过统一检测将分类和边界框回归结合在一个端到端的模型中,突破了先前方法的局限。尽管存在如多物体检测不足和定位精度不高等问题,但YOLO在Titan X GPU上实现了45FPS的速度,证明了其在实时应用中的潜力。YOLOv1的网络结构受到GoogLeNet启发,包含24层卷积和2层全连接层,使用迁移学习进行训练,并通过非极大值抑制提升预测准确性。
摘要由CSDN通过智能技术生成

本文是对YOLO的全面解释,觉得有用请关注我的博客,YOLO的后续版本将会跟进哦!

物体检测object detection是计算机视觉中一个很热门的方向,前前后后也提出了很多很多不同的方法,但是在YOLO之前,大多是将其视为分类问题,而YOLO的出现,打破了这一局限,采用回归的方式来解决问题,并且取得了重大成果。
所谓“天下武功,唯快不破”说的正是速度的重要性,虽然之前的模型R-CNN系列等能达到较高的准确率,但是其速度实在是不可恭维,无法应用在实际场景中。而YOLO的一大优点就是检测速度非常快,在一块 Titan X GPU上能达到45FPS,也就是说已经real-time了。下面我们来看一下YOLO的version 1


一、概述

下图是YOLO的整体描述,就三个步骤:

  1. 将image大小缩放到448*448
  2. 以image为输入,经CNN处理,得到预测分类和位置的中间值
  3. 采用非极大值的方式,筛选结果
    在这里插入图片描述

二、unified detection

作者提出的YOLO将预测分类和bounding box结合在一起,是一个end-to-end的模型,和之前提出的分阶段模型有极大区别,因此称之为统一检测(unified detection)

  1. 首先,作者提出的模型将输入图像

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值