1、马普所对SMPL模型的改进,是参数稀疏,泛化性能更好。
2、每个关节点只影响在关节点周围的顶点,所以参数更少了。
3、不同人相同的姿势对shape的影响是不一样的所以添加了BMI参数。
不明白的一点是为啥加了ReLU约束就可以达到这样的效果:
即每个关节点只影响距离近的顶点,不会像SMPL那样没有规律。(欢迎大佬解读)
1、马普所对SMPL模型的改进,是参数稀疏,泛化性能更好。
2、每个关节点只影响在关节点周围的顶点,所以参数更少了。
3、不同人相同的姿势对shape的影响是不一样的所以添加了BMI参数。
不明白的一点是为啥加了ReLU约束就可以达到这样的效果:
即每个关节点只影响距离近的顶点,不会像SMPL那样没有规律。(欢迎大佬解读)