一、核心原理与架构解析
1.1 ControlNet Pose模型的技术本质
ControlNet Pose模型是基于OpenPose人体姿态估计框架与Stable Diffusion深度融合的产物。其核心技术路径如下:
- 关键点检测:通过OpenPose预处理器提取人体18个关键节点(如肩关节、肘关节、腕关节等),生成骨架特征图。
- 特征融合:将骨架特征图与文本嵌入向量在UNet的中间层进行交叉归一化(CrossNorm)处理,实现姿态信息对生成过程的精准约束。
- 多模态控制:支持同时输入多个人体姿态参考图像,通过权重分配实现混合姿态控制。
技术突破点:
- 动态骨骼映射:采用可变形卷积(Deformable Convolution)动态调整感受野,解决复杂动作下的关节错位问题。