13个最受欢迎的图像标注工具【机器学习】

在这里插入图片描述

推荐:用 NSDT编辑器 快速搭建可编程3D场景

在为特定用例选择最佳图像注释工具时,很容易感到困惑。

更重要的是,每隔几个月就有一个新的数据训练平台进入市场,并承诺提供创新功能、更快的标记或更高精度。

但优化数据注释过程对于确保模型的高性能和可靠性至关重要。 因此,为你的计算机视觉项目选择正确的工具不应掉以轻心。

为此,我们列出了13个最流行的图像标注工具及其主要功能和定价信息,其中1至8为付费平台,9至13为免费图像标注工具。

下表为8个付费平台的主要对比:

在这里插入图片描述

1、V7

V7是一个集数据集管理、图像标注、视频标注、autoML模型训练于一体的自动化标注平台,自动完成标注任务。
在这里插入图片描述

V7 使团队能够存储、管理、注释和自动化其数据标注工作流程:图片、视频、DICOM医疗数据、显微镜图像、PDF和文档处理、3D体积数据。

V7的主要特点包括:

  • 自动标注功能,无需事先培训
  • 可组合的工作流程允许多个模型和人员参与循环阶段
  • 在大规模情况下保持稳健的数据集管理
  • 综合数据标记服务
  • 实时协作和流畅的用户体验
  • 帧完美的视频标注工具

V7的价格:

  • 0 美元起(教育计划),更多详情请参见 V7 定价页面

2、Labelbox

Labelbox 是一个由三个核心层构建的训练数据平台,可促进从标记、协作到迭代的整个过程。 它创建于 2018 年,并迅速成为最流行的数据标记工具之一。

在这里插入图片描述

Labelbox 提供支持 AI 的标签工具、标签自动化、人力、数据管理、强大的集成 API 以及用于扩展的 Python SDK。它支持使用多边形、边界框、线条以及更高级的标签工具进行注释。

Labelbox的主要特性:

  • AI 辅助标签(BYO 模型)
  • 综合数据标记服务
  • QA/QC 工具和标注审核工作流程
  • 强大的标注者性能分析
  • 可定制的界面以简化任务

Labelbox的价格:

  • 免费 5000 张图像/定制专业版和企业版计划。

3、Scale AI

Scale 是一个数据平台,可对大量 3D 传感器、图像和视频数据进行注释。
在这里插入图片描述

Scale 提供基于 ML 的预标记、自动化质量保证系统、数据集管理、文档处理和人工智能辅助数据注释(避开自动驾驶数据处理)。该数据注释工具可用于各种计算机视觉任务,包括对象检测、分类和文本识别,并且支持多种数据格式。

Scale 的主要特性:

  • 机器学习驱动的预标注
  • 核心数据集管理
  • 带有黄金套装的自动化 QA 系统
  • 文档处理功能
  • 模型在环数据管理

Scale的价格:

  • 50,000 美元起

4、SuperAnnotate

Superannotate 是一个端到端图像和视频注释平台,可简化和自动化计算机视觉工作流程。
在这里插入图片描述

SuperAnnotate 允许你为各种计算机视觉任务创建高质量的训练数据集,包括对象检测、实例和语义分割、关键点注释、长方体注释和视频跟踪。可用的工具包括矢量注释(框、多边形、直线、椭圆、关键点和长方体)和使用画笔的像素级注释。

SuperAnnotate的主要特性:

  • AI 辅助标签(BYO 模型)
  • 用于语义分割的超像素
  • 先进的质量控制系统
  • 通过图像转换支持多种格式

SuperAnnotate的价格:

  • 14 天免费试用
  • 定制入门版、专业版、企业版计划

5、DataLoop

DataLoop是一体化的基于云的注释平台,具有嵌入式工具和自动化功能,可生成高质量的数据集。
在这里插入图片描述

DataLoop 通过利用循环中的人类反馈来适应整个人工智能生命周期,包括注释、模型评估和模型改进。它提供了用于基本计算机视觉任务的工具,例如检测、分类、关键点和分割。 Dataloop 支持图像和视频数据。

DataLoop的主要特性:

  • 模型辅助标记
  • 多种数据类型支持
  • 具有简化的数据索引和查询系统的高级团队工作流程
  • 视频支持

DataLoop的价格:

  • 免费试用、定制企业计划

6、Playment

Playment 是一个完全托管的数据标签平台,成立于 2015 年,为计算机视觉模型生成训练数据。

在这里插入图片描述

Playment 支持图像和视频数据,并提供各种基本注释工具,包括边界框、长方体、多边形或地标。它遵循微工作原则,将大问题分解为微任务,并将它们分配给训练有素的注释者的大型社区。

Playment的主要特性:

  • 完全托管—只需要企业共享数据和标签指南
  • 允许属性提取
  • 文档管理(人工辅助 OCR)

7、Supervise.ly

Supervise.ly 是一个基于网络的图像和视频标注平台,个人研究人员和大型团队可以在其中对数据集和神经网络进行注释和实验。

在这里插入图片描述

除了框、线、点、多边形或位图画笔等基本注释工具外,Supervise.ly 还提供数据转换语言工具并支持 3D 点云。

Supervise.ly的主要特性:

  • AI辅助标记
  • 多格式数据注释和管理
  • 选项开发和导入自定义数据格式的插件
  • 3D 点云
  • 团队、工作区和数据集不同级别的项目管理选项。

Supervise.ly的价格:

  • 社区版免费 100 张图片

8、Hive Data

Hive Data 是一个完全托管的数据注释解决方案,用于为 AI / ML 模型获取和标记训练数据。
在这里插入图片描述

Hive Data 支持图像、视频、文本、3D 点云注释和数据源。 除了基本注释类型之外,Hive Data 还提供多帧对象跟踪、轮廓和 3D 全景分割。

Hive Data的主要特性:

  • 多种数据类型支持
  • 可用数据来源
  • 完全托管的端到端数据标签服务

9、CVAT

CVAT(计算机视觉标注工具)是一个开源的、基于网络的图像和视频标注工具,用于标记计算机视觉数据,由英特尔支持和维护。

在这里插入图片描述

CVAT 支持监督机器学习的主要任务:对象检测、图像分类和图像分割。 它提供四种基本类型的注释:框、多边形、折线和点。

CVAT的主要特性:

  • 半自动标注
  • 关键帧之间形状的插值
  • 带有注释项目和任务列表的仪表板
  • LDAP
  • 支持大量自动化仪器,包括使用 TensorFlow* 对象检测 API 或视频插值的自动标注。

CVAT是免费的。

10、LabelMe

LabelMe是由麻省理工学院计算机科学与人工智能实验室创建的在线注释工具。 它提供带有标注的数字图像数据集。

在这里插入图片描述

该数据集是免费的,并向外部贡献开放。Labelme支持多边形、矩形、圆形、直线、点、线带等六种不同的标注类型。 限制之一是文件只能以 JSON 格式保存和导出。

LabelMe的主要特征:

  • 控制点修改
  • 线段和多边形移除
  • 六种注释类型
  • 文件列表

LabelMe是免费的。

11、Labelimg

Labelimg是一种图形图像标注工具,用于使用图像中的边界框来标记对象。 它是用 Python 编写的。 你可以将标注导出为 PASCAL VOC 格式的 XML 文件。
在这里插入图片描述

在默认版本中,Labelimg 仅提供一种注释类型 - 边界框或矩形形状。 不过,你还可以使用 GitHub 页面通过代码添加另一种形状。

Labelimg的主要特性:

  • 标注在 PASCAL VOC 中保存为 XML 文件
  • 需要本地安装
  • 仅图像标注

Labelimg是免费的。

12、VoTT

VoTT(Visual Object Tagging Tool)是微软开发的一款免费开源的图像标注工具。
在这里插入图片描述

VoTT 提供端到端支持,用于生成数据集并验证视频和图像资产的对象检测模型。

VoTT的主要特性:

  • 可以选择标记和注释图像目录或独立视频
  • 标签和资产导出为 CNTK、Tensorflow (PascalVOC) 或 YOLO 格式
  • 提供可扩展模型,用于从本地和云存储提供商导入/导出数据
  • 允许在新视频上运行和验证经过训练的 CNTK 对象检测模型,以生成更强大的模型

VoTT是免费的。

13、ImgLab

ImgLab 是一个开源的、基于网络的图像标注工具。
在这里插入图片描述

ImgLab提供点、圆、边界框、多边形等多种标签类型。 它还支持各种格式,包括 dlib、XML、Pascal VOC 和 COCO。

ImgLab的主要特性:

  • 基于网络和本地版本
  • 基本 IDE 功能
  • 支持多种标签类型和文件格式

ImgLab是免费的。


原文链接:Top 13图像标注工具 — BimAnt

### 回答1: Python机器学习图像识别领域具有广泛的应用。机器学习可以通过训练模型来自动地从图像中识别出特定的对象、场景或属性。在Python中,有多种强大的机器学习库可以用于图像识别。以下是关于Python机器学习图像识别的一些重要概念和方法: 1. 特征提取:机器学习模型需要在图像中找到特定的可识别特征。Python提供了多种用于图像特征提取的库,如OpenCV和Scikit-learn,它们可以提取图像中的边缘、纹理、色彩等特征。 2. 分类算法:在图像识别中,常用的机器学习算法有支持向量机(SVM)、随机森林(Random Forest)和卷积神经网络(CNN)等。Python中有多个库可用于实现这些算法,如Scikit-learn和Keras等。 3. 数据集和标注图像识别通常需要大量的标注图像来训练模型。Python提供了一些用于处理和增强图像数据集的库,如PIL和Scikit-image。此外,还有许多公开的图像数据集可供学习和研究,如MNIST和CIFAR-10等。 4. 模型评估:为了评估模型的识别性能,可以使用各种评价指标,如准确率、召回率和F1-score等。Python中的Scikit-learn库提供了用于模型评估的函数和工具。 5. 迁移学习:对于计算资源有限的情况,迁移学习是一种常用的方法。通过使用在大型图像数据集上预训练的模型,可以将它们迁移到需要解决的具体问题上。Python中的Keras和TensorFlow等库支持迁移学习。 总结而言,Python机器学习图像识别领域提供了丰富的工具和库,可以帮助我们实现从图像中识别和理解信息的自动化过程。无论是从事研究还是应用开发,使用Python进行图像识别都是一个很好的选择。 ### 回答2: Python 是一种流行的编程语言,它在机器学习领域得到了广泛应用,其中包括图像识别。图像识别是指使用机器学习算法识别和分类图像的能力。 Python 机器学习库中著名且常用的是 TensorFlow 和 Keras。TensorFlow 是由 Google 开发的开源库,提供了一种构建和训练神经网络的框架。Keras 是一种高级神经网络库,它建立在 TensorFlow 之上,提供了简单易用的接口。使用这些库,我们可以使用 Python 编写代码来创建、训练和测试图像识别模型。 对于图像识别任务,我们通常会使用卷积神经网络(Convolutional Neural Network,CNN)。CNN 是一种深度学习模型,专门用于处理图像数据。该模型通过卷积层、池化层和全连接层等组件来提取图像中的特征,并进行分类或识别。 在使用 Python 进行图像识别时,我们需要一些预处理步骤。首先,我们需要准备训练数据集和测试数据集。然后,我们可以使用 TensorFlow 或 Keras 中的函数来加载和处理图像数据。这些函数可以帮助我们将图像转换为数值矩阵,以便模型能够处理。 接下来,我们可以构建 CNN 模型。使用 TensorFlow 和 Keras,我们可以轻松地定义卷积层、池化层和全连接层,以及它们之间的连接。还可以选择不同的激活函数、优化算法和损失函数,以进一步改进模型的性能。 一旦我们定义好了模型,就可以将训练数据送入模型进行训练。通常,我们使用梯度下降等优化算法来小化模型的损失函数,并反复迭代调整模型参数。训练完成后,我们可以使用测试数据评估模型的准确性。 总结来说,Python 机器学习库提供了强大的工具和函数,使我们能够用 CNN 模型进行图像识别。通过使用 TensorFlow 和 Keras 等库,我们可以更容易地构建、训练和测试图像识别模型,从而在图像分类和识别等任务中取得更好的效果。 ### 回答3: Python机器学习图像识别中得到了广泛应用。图像识别是计算机视觉的一个重要研究方向,旨在使计算机能够自动识别和理解图像信息。 利用Python机器学习技术进行图像识别,主要涉及以下几个方面。首先,收集并准备图像数据集。这可以通过网络爬虫、数据库等方式获取大量标注图像数据,然后将其转化为可供机器学习算法进行处理的格式。 其次,需要选择适当的机器学习算法。常用的图像识别算法包括卷积神经网络(CNN)、支持向量机(SVM)和决策树等。Python的机器学习库如Scikit-learn、TensorFlow和Keras都提供了这些经典算法的实现。 然后,使用选择的算法对图像进行训练和测试。训练过程中,通过输入大量已标注图像样本,利用机器学习算法提取特征和学习模式,从而使机器能够学会识别图像中的目标。测试过程中,将未知的图像样本输入训练好的模型,判断其属于哪个类别。 后,评估和优化模型的性能。通过计算模型的准确率、召回率、精确度等指标,评估模型的性能。如果模型性能不理想,可以尝试调整算法参数、增加训练样本数量或改进特征提取方法等来优化模型。 总而言之,Python机器学习图像识别中有着广泛的应用前景。随着深度学习和人工智能的不断发展,我们将会看到更加强大和智能的图像识别系统的出现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值