
机器学习
文章平均质量分 85
新缸中之脑
这个作者很懒,什么都没留下…
展开
-
UNET图像语义分割入门【深度学习】
在这个教程中,我们将学习如何利用UNET深度学习网络实现地震图像的语义分割,除了UNET,本文还介绍了图像处理的几种常见任务,以及卷积网络常用的操作和术语,例如卷积、最大池、接受域、上采样、转置卷积、跳过连接等。1. 介绍计算机视觉是一个跨学科的科学领域,涉及如何使计算机从数字图像或视频中获得高级别的理解。从工程学的角度看,它寻求实现人类视觉系统能够完成的任务自动化。 (维基百科)在过去几年中,深度学习使计算机视觉领域取得了飞速的发展。在这篇文章中,我想讨论一个具体的任务,在计算机视觉称为语义分割。原创 2021-08-01 23:20:49 · 2976 阅读 · 1 评论 -
sklearn的5个秘密武器
虽然scikit-learn在机器学习领域很重要,但是很多人并不知道利用这个库中的一些强大的功能。本文将介绍scikit-learn中5个最有用的5个隐藏的瑰宝,充分利用这些秘密武器将有效提高你的机器学习处理的效率!1、数据集生成器Scikit-learn有很多数据集生成器,可以用来生成各种复杂度和维度的人工数据集。例如,make_blobs函数可以创建包含很多数据样本、聚类中心、维度的“blobs”或数据聚类。可视化以后可以清晰看出样本的分布:Scikit-learn其实提供了很多数据集创建函数原创 2020-06-21 07:56:55 · 327 阅读 · 0 评论 -
决策树可视化【Matplotlib/Graphviz】
决策树是一种流行的有监督学习方法。决策树的优势在于其既可以用于回归,也可以用于分类,不需要特征缩放,而且具有比较好的可解释性,容易将决策树可视化。可视化的决策树不仅是理解你的模型的好办法,也是向其他人介绍你的模型的运作机制的有利工具。因此掌握决策树可视化的方法对于数据分析工作者来说非常重要。机器学习相关教程:TensorFlow实战 | 机器学习基础 | 深入浅出Flask | Python...原创 2020-04-05 17:45:04 · 14521 阅读 · 3 评论 -
Streamlit实战Twitter微博情感分类【Flair】
Streamlit是一个出色的机器学习工具开发库,这个教程将学习如何使用streamlit和flair开发一个twitter微博情感分析的应用。相关链接:Streamlit开发手册1、streamlit概述并不是每个人都是数据科学家,但是每个人都需要数据科学带来的力量。Streamlit帮我们解决了这个问题,利用streamlit部署机器学习模型简单到只需要几个函数调用。例如,如果运行...原创 2020-01-30 11:03:37 · 1523 阅读 · 0 评论 -
Python实战电影推荐系统【Content-based】
在这个教程中,我们将实现一个基于电影内容本身相似性的推荐系统。我们将利用自然语言处理/ NLP技术来提取每个电影的特征,然后建立不同电影之间的余弦相似性矩阵,最后利用相似矩阵来推荐指定电影的10个最相似电影。快速掌握Python开发技能,推荐汇智网的Python在线课程。当我们评价互联网上的产品和服务时,我们表达并分享出来的倾向性,被推荐系统用来生成个性化推荐。最常见的例子就是亚马逊的商...原创 2019-11-18 12:40:08 · 6423 阅读 · 0 评论 -
NLTK实战Chatbot【源码下载】
聊天机器人(Chatbot)是一种人工智能软件,利用它你可以通过网站、手机App或电话等途径和用户进行自然语言对话。聊天机器人可以在不同的行业中应用于不同的场景。NLTK是进行自然语言处理(NLP)的领先的Python开发包 — 另一个常用的NLP开发包是Spacy — 在这个教程中,我们将使用NLTK开发库创建一个简单的聊天机器人。1、导入开发包及数据首先导入必要的开发包:然后将数据集导...原创 2019-11-15 00:08:42 · 884 阅读 · 0 评论 -
Streamlit API文档中文版
Streamlit是一个开源的Python库,利用Streamlit可以快速构建机器学习应用的用户界面。Streamlit API中文开发文档由汇智网翻译整理,访问地址:http://cw.hubwiz.com/card/c/streamlit-manual/。安装StreamlitSteamlit需要Python 2.7.0 / Python 3.6.x或更高版本。使用PIP安装St...原创 2019-11-14 23:57:29 · 19262 阅读 · 0 评论 -
streamlit更改端口的办法
streamlit应用默认在8501端口监听,那么如果该端口与其他应用冲突,应该如何更改streamlit应用的监听端口?streamlit开发文档中文版地址:http://cw.hubwiz.com/card/c/streamlit-manual解决方案可以在streamlit的配置文件config.toml中设置streamlit应用的监听端口。streamlit的配置文件路径为:...原创 2019-11-12 22:08:17 · 4299 阅读 · 1 评论 -
机器学习实战:用胶囊网络识别交通标志
每个人似乎都对胶囊网络(CapsNet)这种新的神经网络架构的出现很兴奋,我也不例外,忍不住用胶囊网络来建立一个路侧交通标志的识别系统,这篇文章就是对这一过程的介绍,当然,也包括胶囊网络的一些基本概念阐述。项目使用TensorFlow开发,是基于Sara Sabour,Nicholas Frosst和Geoffrey E. Hinton的论文《 胶囊间动态路由 》,代码保存在github。如果你迫不翻译 2018-01-09 01:22:51 · 9546 阅读 · 4 评论 -
NLP微博文本分类【Snorkel弱监督+ULMFiT迁移学习】
本文是作者一个tweet/微博文本分类实战项目的全程重现与总结。该项目的最大特点是使用了弱监督技术(Snorkel)来获得海量标注数据,同时使用预训练语言模型进行迁移学习。项目的主要步骤如下:采集一小批已标注样本(~600)使用弱监督利用大量未标注样本生成训练集使用一个大型预训练语言模型进行迁移学习要快速掌握机器学习应用的开发,推荐汇智网的机器学习系列教程。弱监督弱监督(W...原创 2019-08-22 07:24:08 · 2568 阅读 · 1 评论 -
3分钟搞定人脸识别!
人脸识别是指计算机程序在数字图像中检测并定位人脸的能力,可以说人脸识别是人工智能最常见的应用之一。从手机的相机App到facebook的照片标签建议,在应用中嵌入人脸识别功能一天比一天常见,在应用中集成人脸识别功能的的需求也越来越多。在本文中,我将介绍如何只用3分钟就为你的应用添加人脸识别功能。学编程,上 汇智网,在线编程环境,一对一助教答疑。首先需要安装Python库:opencv...原创 2019-09-14 19:08:26 · 4108 阅读 · 0 评论 -
边框检测原理与Tensorflow代码
要学习目标检测算法吗?任何一个ML学习者都希望能够给图像中的目标物体圈个漂亮的框框,在这篇文章中我们将学习目标检测中的一个基本概念:边框回归/Bounding Box Regression。边框回归并不复杂,但是即使像YOLO这样顶尖的目标检测器也使用了这一技术!我们将使用Tensorflow的Keras API实现一个边框回归模型。现在开始吧!如果你可以访问Google Colab的话,可以访...原创 2019-09-16 13:50:46 · 1565 阅读 · 4 评论 -
机器学习新手指南
机器学习作为人工智能领域的一个重要主题,已经被大家关注相当一段时间了。机器学习提供了有吸引力的机会,进入这一领域工作并不像想像中那么困难。即使你在数学或编程方面没有任何基础,这也不是什么问题。取得成功的最重要的因素是由足够的兴趣和动力去学习。如果你是一个新手,可能不知道从哪开始学起,也不了解为什么需要机器学习,以及为什么机器学习越来越流行,这正是本文的目的!我手机了所有必须的信息和有用的资源来帮...原创 2019-09-23 14:48:00 · 422 阅读 · 0 评论 -
Sklearn流水线简明教程
在大多数机器学习项目中,你要处理的数据不大可能恰好是生成最优模型的理想格式。有很多数据变换的步骤例如分类变量编码、特征缩放和归一化需要执行。Scikit-learn的预处理模块中包含了内建的函数来支持这些常用的变换。但是,在一个典型的机器学习工作流中你将需要应用这些变换至少两次。一次是在训练时,另一次是在你要用模型预测新数据时。当然你可以写一个函数来重用这些变换,但是你还是需要首先运行这个函数,...原创 2019-09-24 07:49:56 · 952 阅读 · 0 评论 -
Streamlit简明教程【机器学习】
Streamlit是第一个专门针对机器学习和数据科学团队的应用开发框架,它是开发自定义机器学习工具的最快的方法,你可以认为它的目标是取代Flask在机器学习项目中的地位,可以帮助机器学习工程师快速开发用户交互工具。1、Hello world学编程,上汇智网,在线练习环境,一对一助教答疑。Streamlit应用就是Python脚本,没有隐含的状态,你可以使用函数调用重构。只要你会写Pyth...原创 2019-10-09 12:07:24 · 9307 阅读 · 0 评论 -
Plotly安装与使用方法
Plotly是新一代的Python数据可视化开发库,它提供了完善的交互能力和灵活的绘制选项。本文将介绍新手如何安装plotly并编写第一个plotly绘图程序,以及使用plotly绘制常见的5种数据图表。与Matplotlib和Seaborn相比,Plotly将数据可视化提升到一个新的层次。Plotly内置完整的交互能力及编辑工具,支持在线和离线模式,提供稳定的API以便与现有应用集成,既可以在...转载 2019-10-09 22:51:04 · 56228 阅读 · 11 评论 -
机器学习入门:你应该学习的8个神经网络结构(二)
在第一部分中,我们介绍了两种神经网络结构:感知器和卷积神经网络。卷积神经网络是第一种受到广泛认可的深度神经网络,它非常适合处理图像,但并不是特别适合语音之类的时间序列数据。在本文中,我们将继续介绍专门用来处理序列数据的两种结构:基本的递归神经网络、改进的LSTM递归神经网络。3 - 递归神经网络为了理解递归神经网络(RNN:Recurrent Neural Network),我们需翻译 2018-01-07 23:28:10 · 1083 阅读 · 0 评论 -
AI大佬Yann Lecun发飙,斥责某些机器人哗众取宠
要点:Facebook的人工智能负责人抨击机器人索菲亚说要“摧毁所有人类”的头条新闻。Facebook的Yann LeCun表示,索菲娅是“彻头彻尾的垃圾”,批评媒体居然报道这种只能充门面的伪人工智能(Potemkin AI)。索菲亚之父,SingularityNET首席执行官本•古泽尔(Ben Goertzel)则批评Facebook被俄罗斯在美国大选中利用来散布假新闻 。 戈翻译 2018-01-08 02:21:53 · 1579 阅读 · 0 评论 -
小白的机器学习:Numpy矩阵扫盲
让我们马上开始。 Numpy是Python的数学计算库。 它使我们能够高效地进行计算,比Python自带的列表强太多了。在本文中,我将介绍机器学习和数据科学中经常会用到的Numpy的基础知识。 我不打算涵盖Numpy库的所有功能。 这是numpy教程系列的第一部分。翻译 2017-12-21 22:03:14 · 734 阅读 · 0 评论 -
聊天机器人(Chatbot)开发:自然语言处理(NLP)技术栈
我相信在大多数情况下,聊天机器人的开发者构建自己的自然语言解析器,而不是使用第三方云端API,是有意义的选择。 这样做有很好的战略性和技术性方面的依据,我将向你展示自己实现NLP有多么简单。 这篇文章包含3个部分:为什么要自己做最简单的实现也很有效你可以真正用起来的东西那么要实现一个典型的机器人,你需要什么样的NLP技术栈?翻译 2017-12-06 11:45:45 · 6729 阅读 · 0 评论 -
如何成为机器学习工程师:学习路径
从简单的线性回归(linear regressoin)到最新的神经网络(neural network),我们将引导你学习机器学习(ML:machine learning)的各个方面,不仅学习如何使用它们,而且学习如何从头开始构建它们。这条学习路径的很大一部分是以计算机视觉(CV: Computer Vision)为导向的,因为它是获得机器学习领域的知识的最快方法,CV的经验可以简单地转移到任何翻译 2017-12-14 21:25:45 · 863 阅读 · 0 评论 -
15分钟实战机器学习:验证码(CAPTCHA)识别
让我们使用机器学习(machine learning)来绕过世界上最流行的Wordpress验证码插件!每个人都不喜欢验证码(CAPTCHA) - 那些令人讨厌的图像中包含了你必须正确输入的文本,只有输入成功后才能访问网站。 验证码旨在通过验证你是一个真实的人来防止机器(蠕虫)自动填写表格。 但随着深度学习和计算机视觉的兴起,现在很容易使用机器来自动识别验证码了。翻译 2017-12-15 11:29:06 · 26069 阅读 · 17 评论 -
基于神经网络的文本意图(intent)识别
了解聊天机器人(chatbots)的工作原理很重要。 聊天机器人的一个基本机制是利用文本分类器进行意图识别 。 我们来看一下人工神经网络(ANN)的内部工作原理。 在这个教程中,我们将使用2层神经元(1个隐层)和词袋(bag of words)方法来组织我们的训练数据。 文本分类的方法有三种 : 模式匹配 , 传统算法和神经网络 。翻译 2017-12-07 12:29:54 · 18401 阅读 · 4 评论 -
让机器帮你写博客-机器学习实战
我们都对深度神经网络(deep neural network)的最新发展感到兴奋。 在深度学习的各种应用当中,自然语言处理(Natural Language Process)方面的应用引起了相当多的兴趣。 很高兴看到一个机器学习模型可以生成高精度的文本,比如莎士比亚、维基百科 、 哈利·波特 、 奥巴马的演讲 、 星球大战 、甚至是程序代码。我的问题是,是否有可能使用人工智能来实现一个旅游类博原创 2017-12-16 21:37:30 · 904 阅读 · 0 评论 -
如何选择机器学习算法?
在这篇文章中,我将解释机器学习算法的类型以及应当如何针对你的任务进行选择。 我认为了解机器学习算法的类型,有助于看清人工智能技术的全貌,理解在这个领域中大家在做的所有事情的目标是什么,从而可以帮助你更好地分析现实问题并设计出一个机器学习系统。本文会使用如下术语:标注过的数据 (labeled data):由一组训练样本组成的数据,其中每个样本包含输入和期望的输出(也称为监督信号、标签等原创 2017-12-17 00:33:49 · 860 阅读 · 0 评论 -
小白的机器学习之路:Numpy探索
这是numpy教程系列的第二部分。 如果你还没有阅读过第一部分,我建议你先读一下。 在这个教程中,我将介绍Numpy中与数据科学和机器学习相关的重要知识点,也就是说,我不打算涵盖numpy所有的功能。翻译 2017-12-25 12:49:57 · 687 阅读 · 0 评论 -
机器学习实战:车辆检测
当我们开车时会经常关注环境,尤其关注那些潜在障碍物的位置,不管是汽车、行人还是道路上的物体。 同样,当我们开发自动驾驶车辆所需的智能和传感器时,最重要的一点是这些车辆能够检测到障碍物,因为它加强了车辆对环境的理解。 其中一种最重要的障碍物是道路上的其他车辆,因为它们很可能是我们车道或邻近道路上最大的物体,因此构成潜在的危险。原创 2017-12-27 19:11:26 · 7336 阅读 · 2 评论 -
趋势2018:聊天机器人
在八月份,我就聊天机器人(chatbot)行业的现状分享了一些看法 。 这个帖子引起的兴趣和关注让我感到非常惊讶。 许多读者私下联系我,并且分享了他们自己的相关经验。 现在是2017年底,因此我想回顾总结一下,就2018年聊天机器人的趋势分享我的观点 。翻译 2017-12-31 11:13:24 · 1594 阅读 · 0 评论 -
机器学习实战:车牌识别系统
在本教程中,我将带你使用Python来开发一个利用机器学习技术的车牌识别系统(License Plate Recognition)。车牌识别系统使用光学字符识别(OCR)技术来读取车牌上的字符。 换句话说,车牌识别系统以车辆图像作为输入并输出车牌中的字符。 如果你是一个卧底或侦探,就能想象这会对你的工作有多宝贵了: 你可以利用车辆拍照来提取一辆汽车的几乎所有必要信息。翻译 2017-12-26 18:48:48 · 19671 阅读 · 5 评论 -
TensorRec:基于TensorFlow的推荐引擎框架
我开发TensorRec的原因,在于简化基于TensorFlow开发推荐引擎的工作,并让你专注于真正有价值的部分:嵌入函数、损失函数和更可靠的学习算法。 类似于Python中常见的其他机器学习工具,TensorRec也提供了简单易用的API用于训练和预测。 它支持灵活地定制嵌入函数和损失函数,可以帮助建立一个适合你的特定用户和商品的推荐系统。TensorRec还很年轻,但我欢迎你的任何反馈:使用和参翻译 2018-01-04 01:33:53 · 4065 阅读 · 0 评论 -
机器学习实战:用nodejs实现人脸识别
在本文中,我将向你展示如何使用face-recognition.js执行可靠的人脸检测和识别 。 我曾经试图找一个能够精确识别人脸的Node.js库,但是没有找到,因此,我决定自己搞一个! 这个npm包基于dlib实现,因为我发现dlib的识别精度很高。 dlib库使用深度学习方法,并附带一些预训练的模型,这些预置的模型,在LFW人脸识别基准测试上可以达到惊人的准确度:99.38% 。为翻译 2018-01-12 23:58:48 · 12520 阅读 · 2 评论 -
假新闻识别,从0到95% - 机器学习实战
我们使用机器学习和自然语言处理开发了一个假新闻检测器,其在验证集上的准确率超过了95%。 在现实世界中,准确率应该会比95%低一些,特别是随着时间的推移,假新闻的创作方式也会有所改变。由于自然语言处理和机器学习方面发展迅猛,因此我想也许可以搞一个能够识别假新闻的模型,从而遏制假新闻泛滥所造成的灾难性后果 。 可以说,要制作自己的机器学习模型,最困难的部分就是收集训练数据。 我花了几天和几天的时间来收翻译 2018-01-14 00:19:42 · 8655 阅读 · 1 评论 -
机器学习入门:你应该学习的8个神经网络结构(一)
为什么需要机器学习技术?对于那些直接写代码而言太复杂的任务,机器学习是必需的。 有些任务是如此复杂,以至于不可能写出明确应对每一种可能性的程序。 因此,机器学习采用另一个途径,通过向算法输入大量的数据,让算法自行探索数据并获得一个可以解决问题的模型。让我们来看看下面两个例子: 要实现能够在各种复杂场景下(例如杂乱的背景、不同的光照条件、新的观察角度)识别三维对象的程序是很困难的,因为翻译 2018-01-06 19:29:28 · 11844 阅读 · 0 评论 -
助力AI淘金:机器学习公开数据集
建立人工智能(AI)或基于机器学习的系统从未像今天这样容易。 TensorFlow , Torch和Spark等先进的开源工具的无处不在,加上AWS , Google Cloud或其他云提供商提供的大量计算能力,意味着你喝着咖啡,用笔记本电脑就可以训练一个高端的模型。虽然不属于AI炒作的核心,但AI革命的无名英雄是数据 - 大量的由那些领先的研究机构和企业标注和注解过的数据翻译 2017-12-09 23:16:37 · 737 阅读 · 0 评论