
深度学习
文章平均质量分 93
新缸中之脑
这个作者很懒,什么都没留下…
展开
-
Transformer图解
这包装了编码器层。所有这些操作都是将输入编码为具有注意力信息的连续表示。这将有助于解码器在解码过程中专注于输入中的适当单词。您可以将编码器堆叠 N 次以进一步编码信息,其中每一层都有机会学习不同的注意力表示,因此有可能提高 transformer 网络的预测能力。原创 2022-12-24 13:59:36 · 1312 阅读 · 0 评论 -
店铺标牌识别【卷积神经网络】
人工智能之父John McCarthy将AI视为科学和工程的结合,而机器学习是AI已经实现的部分,利用机器学习技术,计算机能够通过体验(数据)来像人类一样学习,而不需要被显式地编程。这篇文章将详细介绍我们在大作业项目如何使用Python的Keras深度学习框架,实现一个卷积神经网络(Convolutional Neural Network)来识别图像中的店铺LOGO/招牌。随着越来越多的数据可...原创 2019-08-16 22:24:17 · 2048 阅读 · 0 评论 -
slowfast网络解读
检测并归类图像中的物体是最广为人知的一个计算机视觉任务,随着ImageNet数据集挑战而更加流行。不过还有一个令人恼火的问题有待解决:视频理解。视频理解指的是对视频片段进行分析并进行解读。虽然有一些最新的进展,现代算法还远远达不到人类的理解层次。Facebook的AI研究团队新发表的一篇论文,SlowFast,提出了一种新颖的方法来分析视频片段的内容,可以在两个应用最广的视频理解基准测试中获...原创 2018-12-28 10:01:58 · 26715 阅读 · 1 评论 -
机器学习入门:你应该学习的8个神经网络结构(二)
在第一部分中,我们介绍了两种神经网络结构:感知器和卷积神经网络。卷积神经网络是第一种受到广泛认可的深度神经网络,它非常适合处理图像,但并不是特别适合语音之类的时间序列数据。在本文中,我们将继续介绍专门用来处理序列数据的两种结构:基本的递归神经网络、改进的LSTM递归神经网络。3 - 递归神经网络为了理解递归神经网络(RNN:Recurrent Neural Network),我们需翻译 2018-01-07 23:28:10 · 1083 阅读 · 0 评论 -
AI大佬Yann Lecun发飙,斥责某些机器人哗众取宠
要点:Facebook的人工智能负责人抨击机器人索菲亚说要“摧毁所有人类”的头条新闻。Facebook的Yann LeCun表示,索菲娅是“彻头彻尾的垃圾”,批评媒体居然报道这种只能充门面的伪人工智能(Potemkin AI)。索菲亚之父,SingularityNET首席执行官本•古泽尔(Ben Goertzel)则批评Facebook被俄罗斯在美国大选中利用来散布假新闻 。 戈翻译 2018-01-08 02:21:53 · 1579 阅读 · 0 评论 -
机器学习入门:你应该学习的8个神经网络结构(一)
为什么需要机器学习技术?对于那些直接写代码而言太复杂的任务,机器学习是必需的。 有些任务是如此复杂,以至于不可能写出明确应对每一种可能性的程序。 因此,机器学习采用另一个途径,通过向算法输入大量的数据,让算法自行探索数据并获得一个可以解决问题的模型。让我们来看看下面两个例子: 要实现能够在各种复杂场景下(例如杂乱的背景、不同的光照条件、新的观察角度)识别三维对象的程序是很困难的,因为翻译 2018-01-06 19:29:28 · 11844 阅读 · 0 评论 -
假新闻识别,从0到95% - 机器学习实战
我们使用机器学习和自然语言处理开发了一个假新闻检测器,其在验证集上的准确率超过了95%。 在现实世界中,准确率应该会比95%低一些,特别是随着时间的推移,假新闻的创作方式也会有所改变。由于自然语言处理和机器学习方面发展迅猛,因此我想也许可以搞一个能够识别假新闻的模型,从而遏制假新闻泛滥所造成的灾难性后果 。 可以说,要制作自己的机器学习模型,最困难的部分就是收集训练数据。 我花了几天和几天的时间来收翻译 2018-01-14 00:19:42 · 8655 阅读 · 1 评论 -
机器学习实战:用nodejs实现人脸识别
在本文中,我将向你展示如何使用face-recognition.js执行可靠的人脸检测和识别 。 我曾经试图找一个能够精确识别人脸的Node.js库,但是没有找到,因此,我决定自己搞一个! 这个npm包基于dlib实现,因为我发现dlib的识别精度很高。 dlib库使用深度学习方法,并附带一些预训练的模型,这些预置的模型,在LFW人脸识别基准测试上可以达到惊人的准确度:99.38% 。为翻译 2018-01-12 23:58:48 · 12518 阅读 · 2 评论 -
机器学习实战:用网络摄像头预测年龄和性别
你有没有猜过一个人的年龄? 下面这个简单的神经网络模型可以帮你做这件事。本文的演示将从网络摄像头中获取实时视频流,并自动标注其中出现人脸的年龄和性别。 在家门口放一个这样的摄像头就可以了解访客的年龄和性别,你可以想象一下这有多酷! 我是在Windows PC使用Python 3.5运行这个模型。 你也可以使用其他操作系统,或者直接使用汇智网的Python机器学习在线运行环境。工作原理翻译 2018-01-09 23:32:36 · 4084 阅读 · 1 评论 -
机器学习实战:车牌识别系统
在本教程中,我将带你使用Python来开发一个利用机器学习技术的车牌识别系统(License Plate Recognition)。车牌识别系统使用光学字符识别(OCR)技术来读取车牌上的字符。 换句话说,车牌识别系统以车辆图像作为输入并输出车牌中的字符。 如果你是一个卧底或侦探,就能想象这会对你的工作有多宝贵了: 你可以利用车辆拍照来提取一辆汽车的几乎所有必要信息。翻译 2017-12-26 18:48:48 · 19671 阅读 · 5 评论 -
胶囊网络(Capsule Network)的TensorFlow实现
胶囊网络(Capsule Network)的TensorFlow实现 `Geoffrey Hinton`的胶囊网络(`Capsule Network`)震动了整个人工智能领域,它将卷积神经网络(CNN)的极限推到一个新的水平。本文使用谷歌的`Colaboratory`工具在`TensorFlow`上实现胶囊网络。翻译 2017-12-05 20:05:29 · 34043 阅读 · 7 评论 -
聊天机器人(chatbot)终极指南:自然语言处理(NLP)和深度机器学习(Deep Machine Learning)
在过去的几个月中,我一直在收集自然语言处理(NLP)以及如何将NLP和深度学习(Deep Learning)应用到聊天机器人(Chatbots)方面的最好的资料。时不时地我会发现一个出色的资源,因此我很快就开始把这些资源编制成列表。 不久,我就发现自己开始与bot开发人员和bot社区的其他人共享这份清单以及一些非常有用的文章了。在这个过程中,我的名单变成了一个指南。翻译 2017-12-06 00:47:26 · 17677 阅读 · 0 评论 -
面向非专家的DL系列之一:深度学习的4个突破
无论你是个人还是机构,如果要开始在产品中应用深度学习技术,都需要先了解两部分的信息:深度学习能做什么 :首先需要了解深度学习领域最新的发展,知道它现在的能力所及如何运用深度学习 :还需要了解如何训练新涌现的模型,或如何将现有模型运用到生产中去由于开源社区的优势,第二部分(即如何运用)现在已经变得越来越简单。翻译 2017-12-11 01:34:57 · 662 阅读 · 0 评论 -
对抗自编码器指南之一:自编码器
自编码器是一种特殊的神经网络(`neural network`),它的输出目标(`target`)就是输入(所以它基本上就是试图将输出重构为输入),由于它不需要任何人工标注,所以可以采用无监督的方式进行训练。自编码器包括两个组成部分:编码器和解码器。翻译 2017-12-09 19:21:41 · 10406 阅读 · 1 评论