机器学习
机器学习与人工智能知识与技能推广
新缸中之脑
这个作者很懒,什么都没留下…
展开
-
人工智能案例:车厂特斯拉的花式AI应用...
作为电动汽车市场的领导者和先锋,特斯拉(Tesla)已经家喻户晓,它同时也生产和销售高级电池和太阳能电池板技术。作为极其关注自动驾驶领域的技术先驱企业,特斯拉一直对人工智能有浓厚的兴趣。就在这个月,其创始人兼首席执行官埃隆·马斯克(Elon Musk)公开宣布正在开发自己的AI硬件。即时不是完全令人惊讶,这个消息也绝对是有趣的,马斯克已经喷了AI很多回。他警告说AI将会颠覆这个社会的方方面翻译 2018-01-09 11:21:51 · 4755 阅读 · 0 评论 -
阿尔法狗的秘密:人工智能中的强化学习
在强化学习中 ,虽然没有现成的答案,但是强化学习代理(`agent`)仍然必须决定如何行动(`action`)来完成它自己的任务。 在没有训练数据的情况下,代理从经验中学习。 它通过反复的试错来收集训练样本(“这个动作很好,那个动作很糟糕”),学习的目标就是使其长期奖励(`reward`)最大化 。翻译 2017-12-12 23:38:57 · 10228 阅读 · 0 评论 -
基于递归神经网络(RNN)的口语理解(SLU)
在之前的教程中,我们介绍了卷积神经网络(CNN)和keras深度学习框架。 我们用它们解决了一个计算机视觉(CV)问题:交通标志识别。 今天,我们将用keras解决一个自然语言处理(NLP)问题。问题和数据集我们要解决的问题是自然语言理解(Natural Language Understanding) 。翻译 2017-12-08 11:19:24 · 5409 阅读 · 0 评论 -
聊天机器人(Chatbot)开发:自然语言处理(NLP)技术栈
我相信在大多数情况下,聊天机器人的开发者构建自己的自然语言解析器,而不是使用第三方云端API,是有意义的选择。 这样做有很好的战略性和技术性方面的依据,我将向你展示自己实现NLP有多么简单。 这篇文章包含3个部分:为什么要自己做最简单的实现也很有效你可以真正用起来的东西那么要实现一个典型的机器人,你需要什么样的NLP技术栈?翻译 2017-12-06 11:45:45 · 6729 阅读 · 0 评论 -
基于神经网络的文本意图(intent)识别
了解聊天机器人(chatbots)的工作原理很重要。 聊天机器人的一个基本机制是利用文本分类器进行意图识别 。 我们来看一下人工神经网络(ANN)的内部工作原理。 在这个教程中,我们将使用2层神经元(1个隐层)和词袋(bag of words)方法来组织我们的训练数据。 文本分类的方法有三种 : 模式匹配 , 传统算法和神经网络 。翻译 2017-12-07 12:29:54 · 18401 阅读 · 4 评论 -
助力AI淘金:机器学习公开数据集
建立人工智能(AI)或基于机器学习的系统从未像今天这样容易。 TensorFlow , Torch和Spark等先进的开源工具的无处不在,加上AWS , Google Cloud或其他云提供商提供的大量计算能力,意味着你喝着咖啡,用笔记本电脑就可以训练一个高端的模型。虽然不属于AI炒作的核心,但AI革命的无名英雄是数据 - 大量的由那些领先的研究机构和企业标注和注解过的数据翻译 2017-12-09 23:16:37 · 737 阅读 · 0 评论 -
如何选择机器学习算法?
在这篇文章中,我将解释机器学习算法的类型以及应当如何针对你的任务进行选择。 我认为了解机器学习算法的类型,有助于看清人工智能技术的全貌,理解在这个领域中大家在做的所有事情的目标是什么,从而可以帮助你更好地分析现实问题并设计出一个机器学习系统。本文会使用如下术语:标注过的数据 (labeled data):由一组训练样本组成的数据,其中每个样本包含输入和期望的输出(也称为监督信号、标签等原创 2017-12-17 00:33:49 · 860 阅读 · 0 评论 -
如何成为机器学习工程师:学习路径
从简单的线性回归(linear regressoin)到最新的神经网络(neural network),我们将引导你学习机器学习(ML:machine learning)的各个方面,不仅学习如何使用它们,而且学习如何从头开始构建它们。这条学习路径的很大一部分是以计算机视觉(CV: Computer Vision)为导向的,因为它是获得机器学习领域的知识的最快方法,CV的经验可以简单地转移到任何翻译 2017-12-14 21:25:45 · 863 阅读 · 0 评论 -
15分钟实战机器学习:验证码(CAPTCHA)识别
让我们使用机器学习(machine learning)来绕过世界上最流行的Wordpress验证码插件!每个人都不喜欢验证码(CAPTCHA) - 那些令人讨厌的图像中包含了你必须正确输入的文本,只有输入成功后才能访问网站。 验证码旨在通过验证你是一个真实的人来防止机器(蠕虫)自动填写表格。 但随着深度学习和计算机视觉的兴起,现在很容易使用机器来自动识别验证码了。翻译 2017-12-15 11:29:06 · 26069 阅读 · 17 评论 -
让机器帮你写博客-机器学习实战
我们都对深度神经网络(deep neural network)的最新发展感到兴奋。 在深度学习的各种应用当中,自然语言处理(Natural Language Process)方面的应用引起了相当多的兴趣。 很高兴看到一个机器学习模型可以生成高精度的文本,比如莎士比亚、维基百科 、 哈利·波特 、 奥巴马的演讲 、 星球大战 、甚至是程序代码。我的问题是,是否有可能使用人工智能来实现一个旅游类博原创 2017-12-16 21:37:30 · 904 阅读 · 0 评论 -
小白的机器学习:Numpy矩阵扫盲
让我们马上开始。 Numpy是Python的数学计算库。 它使我们能够高效地进行计算,比Python自带的列表强太多了。在本文中,我将介绍机器学习和数据科学中经常会用到的Numpy的基础知识。 我不打算涵盖Numpy库的所有功能。 这是numpy教程系列的第一部分。翻译 2017-12-21 22:03:14 · 734 阅读 · 0 评论 -
小白的机器学习之路:Numpy探索
这是numpy教程系列的第二部分。 如果你还没有阅读过第一部分,我建议你先读一下。 在这个教程中,我将介绍Numpy中与数据科学和机器学习相关的重要知识点,也就是说,我不打算涵盖numpy所有的功能。翻译 2017-12-25 12:49:57 · 687 阅读 · 0 评论 -
机器学习实战:车辆检测
当我们开车时会经常关注环境,尤其关注那些潜在障碍物的位置,不管是汽车、行人还是道路上的物体。 同样,当我们开发自动驾驶车辆所需的智能和传感器时,最重要的一点是这些车辆能够检测到障碍物,因为它加强了车辆对环境的理解。 其中一种最重要的障碍物是道路上的其他车辆,因为它们很可能是我们车道或邻近道路上最大的物体,因此构成潜在的危险。原创 2017-12-27 19:11:26 · 7336 阅读 · 2 评论 -
趋势2018:聊天机器人
在八月份,我就聊天机器人(chatbot)行业的现状分享了一些看法 。 这个帖子引起的兴趣和关注让我感到非常惊讶。 许多读者私下联系我,并且分享了他们自己的相关经验。 现在是2017年底,因此我想回顾总结一下,就2018年聊天机器人的趋势分享我的观点 。翻译 2017-12-31 11:13:24 · 1594 阅读 · 0 评论 -
TensorRec:基于TensorFlow的推荐引擎框架
我开发TensorRec的原因,在于简化基于TensorFlow开发推荐引擎的工作,并让你专注于真正有价值的部分:嵌入函数、损失函数和更可靠的学习算法。 类似于Python中常见的其他机器学习工具,TensorRec也提供了简单易用的API用于训练和预测。 它支持灵活地定制嵌入函数和损失函数,可以帮助建立一个适合你的特定用户和商品的推荐系统。TensorRec还很年轻,但我欢迎你的任何反馈:使用和参翻译 2018-01-04 01:33:53 · 4065 阅读 · 0 评论 -
机器学习实战:用胶囊网络识别交通标志
每个人似乎都对胶囊网络(CapsNet)这种新的神经网络架构的出现很兴奋,我也不例外,忍不住用胶囊网络来建立一个路侧交通标志的识别系统,这篇文章就是对这一过程的介绍,当然,也包括胶囊网络的一些基本概念阐述。项目使用TensorFlow开发,是基于Sara Sabour,Nicholas Frosst和Geoffrey E. Hinton的论文《 胶囊间动态路由 》,代码保存在github。如果你迫不翻译 2018-01-09 01:22:51 · 9546 阅读 · 4 评论 -
胶囊网络(Capsule Network)的TensorFlow实现
胶囊网络(Capsule Network)的TensorFlow实现 `Geoffrey Hinton`的胶囊网络(`Capsule Network`)震动了整个人工智能领域,它将卷积神经网络(CNN)的极限推到一个新的水平。本文使用谷歌的`Colaboratory`工具在`TensorFlow`上实现胶囊网络。翻译 2017-12-05 20:05:29 · 34043 阅读 · 7 评论 -
聊天机器人(chatbot)终极指南:自然语言处理(NLP)和深度机器学习(Deep Machine Learning)
在过去的几个月中,我一直在收集自然语言处理(NLP)以及如何将NLP和深度学习(Deep Learning)应用到聊天机器人(Chatbots)方面的最好的资料。时不时地我会发现一个出色的资源,因此我很快就开始把这些资源编制成列表。 不久,我就发现自己开始与bot开发人员和bot社区的其他人共享这份清单以及一些非常有用的文章了。在这个过程中,我的名单变成了一个指南。翻译 2017-12-06 00:47:26 · 17677 阅读 · 0 评论 -
对抗自编码器指南之一:自编码器
自编码器是一种特殊的神经网络(`neural network`),它的输出目标(`target`)就是输入(所以它基本上就是试图将输出重构为输入),由于它不需要任何人工标注,所以可以采用无监督的方式进行训练。自编码器包括两个组成部分:编码器和解码器。翻译 2017-12-09 19:21:41 · 10406 阅读 · 1 评论 -
面向非专家的DL系列之一:深度学习的4个突破
无论你是个人还是机构,如果要开始在产品中应用深度学习技术,都需要先了解两部分的信息:深度学习能做什么 :首先需要了解深度学习领域最新的发展,知道它现在的能力所及如何运用深度学习 :还需要了解如何训练新涌现的模型,或如何将现有模型运用到生产中去由于开源社区的优势,第二部分(即如何运用)现在已经变得越来越简单。翻译 2017-12-11 01:34:57 · 662 阅读 · 0 评论 -
机器学习实战:车牌识别系统
在本教程中,我将带你使用Python来开发一个利用机器学习技术的车牌识别系统(License Plate Recognition)。车牌识别系统使用光学字符识别(OCR)技术来读取车牌上的字符。 换句话说,车牌识别系统以车辆图像作为输入并输出车牌中的字符。 如果你是一个卧底或侦探,就能想象这会对你的工作有多宝贵了: 你可以利用车辆拍照来提取一辆汽车的几乎所有必要信息。翻译 2017-12-26 18:48:48 · 19671 阅读 · 5 评论 -
机器学习入门:你应该学习的8个神经网络结构(一)
为什么需要机器学习技术?对于那些直接写代码而言太复杂的任务,机器学习是必需的。 有些任务是如此复杂,以至于不可能写出明确应对每一种可能性的程序。 因此,机器学习采用另一个途径,通过向算法输入大量的数据,让算法自行探索数据并获得一个可以解决问题的模型。让我们来看看下面两个例子: 要实现能够在各种复杂场景下(例如杂乱的背景、不同的光照条件、新的观察角度)识别三维对象的程序是很困难的,因为翻译 2018-01-06 19:29:28 · 11844 阅读 · 0 评论 -
机器学习入门:你应该学习的8个神经网络结构(二)
在第一部分中,我们介绍了两种神经网络结构:感知器和卷积神经网络。卷积神经网络是第一种受到广泛认可的深度神经网络,它非常适合处理图像,但并不是特别适合语音之类的时间序列数据。在本文中,我们将继续介绍专门用来处理序列数据的两种结构:基本的递归神经网络、改进的LSTM递归神经网络。3 - 递归神经网络为了理解递归神经网络(RNN:Recurrent Neural Network),我们需翻译 2018-01-07 23:28:10 · 1083 阅读 · 0 评论 -
AI大佬Yann Lecun发飙,斥责某些机器人哗众取宠
要点:Facebook的人工智能负责人抨击机器人索菲亚说要“摧毁所有人类”的头条新闻。Facebook的Yann LeCun表示,索菲娅是“彻头彻尾的垃圾”,批评媒体居然报道这种只能充门面的伪人工智能(Potemkin AI)。索菲亚之父,SingularityNET首席执行官本•古泽尔(Ben Goertzel)则批评Facebook被俄罗斯在美国大选中利用来散布假新闻 。 戈翻译 2018-01-08 02:21:53 · 1579 阅读 · 0 评论 -
机器学习实战:用网络摄像头预测年龄和性别
你有没有猜过一个人的年龄? 下面这个简单的神经网络模型可以帮你做这件事。本文的演示将从网络摄像头中获取实时视频流,并自动标注其中出现人脸的年龄和性别。 在家门口放一个这样的摄像头就可以了解访客的年龄和性别,你可以想象一下这有多酷! 我是在Windows PC使用Python 3.5运行这个模型。 你也可以使用其他操作系统,或者直接使用汇智网的Python机器学习在线运行环境。工作原理翻译 2018-01-09 23:32:36 · 4084 阅读 · 1 评论 -
机器学习实战:用nodejs实现人脸识别
在本文中,我将向你展示如何使用face-recognition.js执行可靠的人脸检测和识别 。 我曾经试图找一个能够精确识别人脸的Node.js库,但是没有找到,因此,我决定自己搞一个! 这个npm包基于dlib实现,因为我发现dlib的识别精度很高。 dlib库使用深度学习方法,并附带一些预训练的模型,这些预置的模型,在LFW人脸识别基准测试上可以达到惊人的准确度:99.38% 。为翻译 2018-01-12 23:58:48 · 12518 阅读 · 2 评论 -
假新闻识别,从0到95% - 机器学习实战
我们使用机器学习和自然语言处理开发了一个假新闻检测器,其在验证集上的准确率超过了95%。 在现实世界中,准确率应该会比95%低一些,特别是随着时间的推移,假新闻的创作方式也会有所改变。由于自然语言处理和机器学习方面发展迅猛,因此我想也许可以搞一个能够识别假新闻的模型,从而遏制假新闻泛滥所造成的灾难性后果 。 可以说,要制作自己的机器学习模型,最困难的部分就是收集训练数据。 我花了几天和几天的时间来收翻译 2018-01-14 00:19:42 · 8655 阅读 · 1 评论