卫星轨道的估计问题(Matlab)(二):扩展卡尔曼滤波(EKF)对新问题的尝试

前言

在前面的问题中我们已经考虑到了用微分方程来描述卫星运动轨迹的方法:

在这里插入图片描述

r ¨ = r θ ˙ 2 − G M r − 2 θ ¨ = − 2 r − 1 r ˙ θ ˙ \ddot r = r\dot \theta^2-GMr^{-2}\\\ddot{\theta}=-2r^{-1}\dot r\dot \theta r¨=rθ˙2GMr2θ¨=2r1r˙θ˙当其运动的参数为: x = [ r , r ˙ , θ , θ ˙ ] T x=[r,\dot r,\theta,\dot{\theta}]^T x=[r,r˙,θ,θ˙]T时,其基本的运动的状态方程为: x ˙ = [ x ( 2 ) x ( 1 ) ∗ ( x ( 4 ) ) 2 − G M ( x ( 1 ) ) − 2 x ( 4 ) − 2 ( x ( 1 ) ) − 1 x ( 2 ) x ( 4 ) ] \dot{x}=\begin{bmatrix}x(2)\\x(1)*(x(4))^2-GM(x(1))^{-2} \\x(4) \\-2(x(1))^{-1}x(2)x(4) \end{bmatrix}\\ x˙=x(2)x(1)(x(4))2GM(x(1))2x(4)2(x(1))1x(2)x(4)
可以采用ode45函数来求解上面的方程实现仿真卫星的真实轨迹的操作。

新的问题及建模

​ 在实际问题中,往往会出现这样一种问题,就是由于其他行星或者天体或者一些其他假设因素的影响,导致卫星的实际运动轨迹并不总是满足上面提到的微分方程的模型。考虑这个过程中 r r r的状态噪声 ζ r \zeta_r ζr,以及 θ \theta θ的状态噪声 ζ θ \zeta_{\theta} ζθ的存在。同时我们借助实际的观测仪器进行 r , θ r,\theta r,θ观测时,也会出现观测上的误差 η r , η θ \eta_r,\eta_{\theta} ηr,ηθ。因此我们的状态微分方程可以进行以下的改写:
r ¨ = r θ ˙ 2 − G M r − 2 + ζ r θ ¨ = − 2 r − 1 r ˙ θ ˙ + r − 1 ζ θ \ddot r = r\dot \theta^2-GMr^{-2}+\zeta_r\\ \ddot{\theta}=-2r^{-1}\dot r \dot \theta+r^{-1}\zeta_{\theta} r¨=rθ˙2GMr2+ζrθ¨=2r1r˙θ˙+r1ζθ x = [ r , r ˙ , θ , θ ˙ ] T x=[r,\dot r,\theta,\dot{\theta}]^T x=[r,r˙,θ,θ˙]T, ω = ( ζ r , ζ θ ) T \omega = (\zeta_r,\zeta_{\theta})^T ω=(ζr,ζθ)T,而 ω \omega ω的协方差矩阵为 Q Q Q,同时用 x ˙ = x k + 1 − x k h \dot{x}=\frac{x_{k+1}-x_k}{h} x˙=hxk+1xk来离散化下面的方程:
x ˙ = [ x ( 2 ) x ( 1 ) ∗ ( x ( 4 ) ) 2 − G M ( x ( 1 ) ) − 2 x ( 4 ) − 2 ( x ( 1 ) ) − 1 x ( 2 ) x ( 4 ) ] + [ 0 , 0 1 , 0 0 , 0 0 , 1 x ( 1 ) ] [ ζ r ζ θ ] \dot{x}=\begin{bmatrix}x(2)\\x(1)*(x(4))^2-GM(x(1))^{-2} \\x(4) \\-2(x(1))^{-1}x(2)x(4) \end{bmatrix}+\begin{bmatrix} 0,0\\1,0\\0,0\\0,\frac{1}{x(1)}\end{bmatrix}\begin{bmatrix}\zeta_r \\ \zeta_{\theta} \end{bmatrix}\\ x˙=x(2)x(1)(x(4))2GM(x(1))2x(4)2(x(1))1x(2)x(4)+0,01,00,00,x(1)1[ζrζθ]
可以得到离散的状态空间模型:
x k + 1 = f ( x k ) + G k ω k x_{k+1} = f(x_k)+G_k\omega_k xk+1=f(xk)+Gkωk其中: f ( x k ) = [ x k ( 1 ) + h x k ( 2 ) x k ( 2 ) + h x k ( 1 ) ∗ ( x k ( 4 ) ) 2 − G M h ( x k ( 1 ) ) − 2 x k ( 3 ) + h x k ( 4 ) x k ( 4 ) − 2 h ( x k ( 1 ) ) − 1 x k ( 2 ) x k ( 4 ) ] G k = [ 0 , 0 h , 0 0 , 0 0 , h x k ( 1 ) ] f(x_k) = \begin{bmatrix} x_k(1)+hx_k(2)\\x_k(2)+hx_k(1)*(x_k(4))^2-GMh(x_k(1))^{-2} \\x_k(3)+hx_k(4) \\x_k(4)-2h(x_k(1))^{-1}x_k(2)x_k(4)\end{bmatrix}\\ G_k = \begin{bmatrix} 0,0\\h,0\\0,0\\0,\frac{h}{x_k(1)}\end{bmatrix} f(xk)=xk(1)+hxk(2)xk(2)+hxk(1)(xk(4))2GMh(xk(1))2xk(3)+hxk(4)xk(4)2h(xk(1))1xk(2)xk(4)Gk=0,0h,00,00,xk(1)h
而对于测量的方程来说,设 v = ( η r , η θ ) T v= (\eta_{r},\eta_{\theta})^T v=(ηr,ηθ)T,其协方差矩阵为 R R R,可以得到实际的考虑误差测量方程:
z k = H x k + v k z_k = Hx_k+v_k zk=Hxk+vk
其中: H = [ 1 0 0 0 0 0 1 0 ] H=\begin{bmatrix} 1&0&0&0\\0&0&1&0\end{bmatrix} H=[10000100],而根据EKF的步骤要求出 ∂ f k ∂ x k \frac{\partial{f_k}}{\partial{x_k}} xkfk,也就是求出 f ( x k ) f(x_k) f(xk)的雅可比矩阵:

x ^ k − \hat{x}_k^- x^k x k x_k xk的先验估计, x ^ k \hat{x}_k x^k x k x_k xk的后验估计。

∂ f ( x k ) ∂ x k ∣ x k = x ^ k − = [ 1 h 0 0 2 h G M ( x ^ k − ( 1 ) ) 3 + h x ^ k − ( 4 ) 2 1 0 2 h x ^ k − ( 1 ) x ^ k − ( 4 ) 0 0 1 h 2 h x ^ k − ( 2 ) x ^ k − ( 4 ) / x ^ k − ( 1 ) 2 − 2 h x ^ k − ( 4 ) / x ^ k − ( 1 ) 0 1 − 2 h x ^ k − ( 2 ) / x ^ k − ( 1 ) ] \frac{\partial{f(x_k)}}{\partial{x_k}}|_{x_k=\hat{x}_k^-}=\begin{bmatrix} 1&h&0&0\\\frac{2hGM}{(\hat{x}_k^-(1))^3}+h\hat{x}_k^-(4)^2&1&0&2h\hat{x}_k^-(1)\hat{x}_k^-(4)\\0&0&1&h\\ 2h\hat{x}_k^-(2)\hat{x}_k^-(4)/\hat{x}_k^-(1)^2&-2h\hat{x}_k^-(4)/\hat{x}_k^-(1)&0&1-2h\hat{x}_k^-(2)/\hat{x}_k^-(1) \end{bmatrix} xkf(xk)xk=x^k=1(x^k(1))32hGM+hx^k(4)202hx^k(2)x^k(4)/x^k(1)2h102hx^k(4)/x^k(1)001002hx^k(1)x^k(4)h12hx^k(2)/x^k(1)

问题的求解

EKF算法参见上篇博客:拓展卡尔曼滤波器(EKF)的数学推导

其中的参数设置:h=24*3600s,Q = 10^8*diag([1,0.5]),R = 10^8*diag([0.5,1]),x0 = [3.86*10^8;0;0;2*pi/28/3600/24],具体的实现代码:

clc,clear;
rng(8);
%设置部分月球卫星的部分参数
G = 6.67259*10^(-11);
M = 5.965*10^(24);
a = 3.86*10^8;
x0 = [a;0;0;2*pi/28/3600/24];
GM = G*M;
day = 24*3600;
tspan = 0:day/24:28*day;
N = 30;
M = 4;M2 = 2;
%以下将求误差协方差矩阵
delta_Q = 1*10^8;
Q = delta_Q*diag([1,0.5]);
h = day;
delta_R = 1*10^8;%测量误差由于混合了状态估计的噪声影响,其数量级也应该在100000km左右
R = delta_R*diag([0.5,1]);
%以下对卫星轨道进行仿真操作
X_real  = zeros(M,N);
Z_real =  zeros(M2,N);
w = zeros(M,N);
v = zeros(M2,N);
X_real(:,1) = x0;Z_real(:,1) = [x0(1);x0(3)]; 
for j = 2:N
    x = X_real(:,j-1);
    f = [x(1)+h*x(2);...
        x(2)+h*x(1)*(x(4))^2-h*GM/(x(1))^2;...
        x(3)+h*x(4);...
        x(4)-2*h*x(2)*x(4)/x(1)];
    g = [0,0;h,0;0,0;0,h/x(1)];
    H = [1 0 0 0;0 0 1 0];
    w(:,j) = g*sqrtm(Q)*randn(2,1);
    v(:,j) = sqrtm(R)*randn(2,1);
    X_real(:,j) = f;
    Z_real(:,j) = H*x;
end
X_test = X_real + w;
Z_test = Z_real + v;
figure(1)
hold on;grid on;
plot(Z_real(1,:).*cos(Z_real(2,:)),Z_real(1,:).*sin(Z_real(2,:)),'ro');
plot(Z_test(1,:).*cos(Z_test(2,:)),Z_test(1,:).*sin(Z_test(2,:)),'b*');
%以上将对噪声进行扩展卡尔曼滤波
X_ekf = zeros(M,N);Z_ekf = zeros(M2,N);
X_ekf(:,1) = X_test(:,1);
Z_ekf(:,1) = Z_test(:,1);
P0 = diag([10^8,10^7/day,10*pi/180,pi/180]);%不重要
for j = 2:N
   x = X_ekf(:,j-1);
   x_ = [x(1)+h*x(2);...
        x(2)+h*x(1)*(x(4))^2-h*GM/(x(1))^2;...
        x(3)+h*x(4);...
        x(4)-2*h*x(2)*x(4)/x(1)];
   g = [0,0;h,0;0,0;0,h/x(1)];
   H = [1 0 0 0;0 0 1 0];
   %下面是估计状态转移矩阵的雅可比矩阵
   f_dx_ = [1,h,0,0;...
           h*(x_(4))^2+2*h*GM/(x_(1)+eps)^3,1,0,2*h*x_(1)*x_(4);...
           0,0,1,h;...
           2*h*x_(2)*x_(4)/(x_(1)+eps)^2,-2*h*x_(4)/(x_(1)+eps),0,1-2*h*x_(2)/(eps+x_(1))]; 
   P_ =  f_dx_*P0*f_dx_'+ g*Q*g';
   K = P_*H'/(H*P_*H' + R);
   x = x_ + K*(Z_test(:,j) - H*x_);
   P0 = (eye(M)-K*H)*P_;
   X_ekf(:,j) = x;
end
plot(X_ekf(1,:).*cos(X_ekf(3,:)),X_ekf(1,:).*sin(X_ekf(3,:)),'go','MarkerFaceColor','k');
legend('真实值','加入高斯噪声','EKF滤波后');
xlabel('x/m');
ylabel('y/m');
title('卫星轨道在EKF前后对比');

在这里插入图片描述

结论

实际上由于原来问题的非线性程度太高了,所以实际滤波效果可以说是非常的差。

扩展卡尔曼滤波EKF)是一种常用的非线性滤波方法,它可以用于估计非线性系统的状态。在MATLAB中,可以使用以下步骤来实现EKF: 1. 定义系统模型和观测模型。 2. 定义系统和观测噪声的协方差矩阵。 3. 初始化状态估计和协方差矩阵。 4. 依次处理每个观测值,并进行预测和更步骤。 5. 在更步骤中,计算卡尔曼增益并更状态估计和协方差矩阵。 以下是一个简单的MATLAB示例,演示了如何使用EKF对非线性系统进行状态估计: ```matlab % 定义系统模型和观测模型 f = @(x) [x(1)+0.1*x(1)*x(2); x(2)-0.05*x(1)*x(2)]; % 系统模型 h = @(x) x(1)^2/20; % 观测模型 % 定义系统和观测噪声的协方差矩阵 Q = diag([0.01, 0.01]); R = 0.1; % 初始化状态估计和协方差矩阵 x0 = [1; 1]; P0 = diag([1, 1]); % 生成观测数据 t = 0:0.1:10; y = h(f([x0(1), x0(2)])) + sqrt(R)*randn(size(t)); x = zeros(length(t), 2); x(1,:) = x0'; % 执行EKF for i = 2:length(t) % 预测步骤 [xp, A] = jacobian(f, x(i-1,:)); Pp = A*P0*A' + Q; % 更步骤 [yp, H] = jacobian(h, xp); K = Pp*H'/(H*Pp*H' + R); x(i,:) = xp' + K*(y(i) - yp); P0 = (eye(2) - K*H)*Pp; end % 绘图 figure; plot(t, x(:,1), 'r', t, sqrt(x(:,2)), 'b', t, -sqrt(x(:,2)), 'b'); xlabel('Time'); legend('Estimate', 'Std Dev', '-Std Dev'); ``` 在这个示例中,我们使用了EKF估计非线性系统的状态,并使用随机噪声生成了观测数据。在EKF的预测步骤中,我们使用了系统模型来预测状态,并计算了状态协方差矩阵。在更步骤中,我们使用观测模型计算卡尔曼增益,并使用观测数据来更状态估计和协方差矩阵。最终,我们绘制了状态估计和标准偏差的图表,以展示EKF的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值