分享 | 图像处理基础——暗通道先验去雾

本文介绍了何恺明提出的暗通道先验去雾方法,该方法利用自然图像的暗通道特性来估计全局大气光和传输率,从而去除雾气。通过分析暗通道图像,选择最亮的前0.1%点估计大气光,并求解每个像素的传输率,实现单幅图像去雾。这种方法简单有效,适用于室外图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

何恺明大神的一鸣惊人之作,《Single image haze removal using dark channel prior》,荣获 2009 CVPR best paper,出道即巅峰,而且一直持续至今。无论是 ResNet 还是这篇暗通道先验去雾,都透露着大道至简的魅力,容易实现,效果惊人。

原理

暗通道

图片

暗通道,我的理解是,RGB 彩色图像中的非天空区域,三个通道中通常有一个通道中的某些像素值很低,接近于 0,尤其是一些最常见的颜色(RGB的格式)——红色 (255, 0, 0),橙色(255, 165, 0),黄色(255, 255, 0),绿色(0, 255, 0),青色(0,255,255),蓝色(0, 0, 255),紫色(160, 32, 240),除了紫色最低值为32,其它的标准颜色都至少有一个为 0,还有黑色(0, 0, 0),其它绝大多数颜色都处于这些标准颜色之间,用来表现这个缤纷多彩的世界勉强够用了,暗通道先验还是有道理的。我也找了一些图片,求解其暗通道来看看效果:

1、室外图像

图片

 图像来源于 MIT-Adobe-5K 数据集

图片

图像来源于 MIT-Adobe-5K 数据集

图片

图像来源于 MIT-Adobe-5K 数据集

图片

图像来源于 MIT-Adobe-5K 数据集

图片

 来源于手机拍摄的现实图像

2. 有雾图像

图片

图像来源于 MIT-Adobe-5K 数据集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值