线性代数之特征值与特征向量的求法

                           线性代数之特征值与特征向量的求法

特征值与特征向量

已知如下矩阵A,求解其特征值和特征向量。

首先构造特征方程 det(λE-A)

情况一:

特征值 = =-2时解方程组(-2E-A)X=0,即得:

于是得同解方程组 - + =0,解为 = - (这里 , 为自由未知量)。

分别令自由未知量 = ,
进而得到基础解系为:

情况二:

特征值 =4时解方程组(4E-A)X=0,即得

总结

Step1:先构造特征方程、展开特征多项式,求出特征值。

Step2:对得到的特征值分别带入原矩阵并化简为行简化型

Step3:求出对应行简化型对应的基础解系并通过通解表示出特征向量

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShenLiang2025

您的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值