图像处理
Lion.Kuo
这个作者很懒,什么都没留下…
展开
-
图像配准与匹配的区别
原出处:http://blog.csdn.net/angelazy/article/details/31733143匹配,是寻找与一幅图相似的图像(不对寻找到的图像做矫正)。配准,是寻找相似图像但是变形后的图像(需要做一些旋转之类的校正变换)。融合,是多幅图像连接成一幅大图,视频集成中用的比较多。 图像配准图像配准所属现代词,指的是将不同时间、不同传感器(成像设备)或不转载 2016-06-01 10:51:04 · 16008 阅读 · 1 评论 -
几种抠象技术理论试验-1 (Luma-Key,Chroma-Key)
在开始之前先确定数值以及符号约定默认的图像空间是:RGB空间使用和Shake一样的float表示颜色数值,颜色范围从 [0-1] 0:表示纯白 1:表示纯黑,0.5表示50%灰。红色使用 (1,0,0) 符号表示。R 表示 红通道G 表示 绿通道B 表示 蓝通道使用Apple Shake作为试验软件。一. Key 的基础概念什么是Mattes转载 2017-02-23 13:11:50 · 4962 阅读 · 0 评论 -
图像自动去暗角算法(vegnetting
暗角图像是一种在现实中较为常见的图像,其主要特征就是在图像四个角有较为显著的亮度下降,比如下面两幅图。根据其形成的成因,主要有3种:natural vignetting, pixel vignetting, 以及mechanic vignetting,当然,不管他的成因如何,如果能够把暗角消除或者局部消除,则就有很好的工程意义。 这方面的资料和论文也不是很多,我转载 2017-02-23 13:04:22 · 3766 阅读 · 2 评论 -
绘制显示直方图
一、图像直方图的概念图像直方图是反映一个图像像素分布的统计表,其实横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的。纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比。图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征。在实际工程中,图像直方图在特征提取、图像匹配等方面都有很好的应用。二、利用OpenCV计算图像的直方图转载 2016-10-26 15:34:48 · 3521 阅读 · 0 评论 -
OpenCV Mat 转 ATL CImage
ImageUtility.h#pragma once #include #include #include using namespace cv;using namespace std;class ImageUtility{public: ImageUtility(void); ~ImageUtility(void); // 实现cv::Mat转载 2016-09-09 17:16:56 · 1849 阅读 · 0 评论 -
使用Opencv调用摄像头并在MFC中进行视频显示
1.使用OpenCV打开摄像头:cv::VideoCapture g_camera(0);if (!g_camera.isOpened()){ g_camera = cv::VideoCapture(1);}if (!g_camera.isOpened()){ std::cerr << "Failed opening g_camera" << std::endl;原创 2016-09-09 17:18:23 · 3963 阅读 · 0 评论 -
opencv 腐蚀与膨胀
膨胀与腐蚀是最基本的两种形态学操作,主要用于实现以下功能:消除噪声;分割出独立图像元素,在图像中连接相邻的元素;寻找图像中的明显的极大值区域或极小值区域;求出图像的梯度;膨胀与腐蚀是相对图像中较亮部分而言的,即:膨胀是使图像中较亮区域变大,腐蚀是使图像中较暗区域变大。opencv中提供了两个函数用以膨胀和服饰操作。void cv::erode(InputArray src,原创 2016-07-29 15:10:00 · 3236 阅读 · 0 评论 -
OpenCV仿射变换+投射变换+单应性矩阵
estimateRigidTransform():计算多个二维点对或者图像之间的最优仿射变换矩阵 (2行x3列),H可以是部分自由度,比如各向一致的切变。getAffineTransform():计算3个二维点对之间的仿射变换矩阵H(2行x3列),自由度为6.warpAffine():对输入图像进行仿射变换findHomography: 计算多个二维点对之间的最优单映射变换矩阵 H(3行x3列转载 2016-06-14 09:27:25 · 999 阅读 · 0 评论 -
图像处理与计算机视觉 基础、经典以及最近发展
目录(?)[+] 图像处理与计算机视觉基础经典以及最近发展一 绪论1 为什么要写这篇文章2 图像处理和计算机视觉的分类3 图像处理和计算机视觉开源库以及编程语言选择4 本文的特点和结构以及适合的对象二 图像处理与计算机视觉相关的书籍1 数学2 信号处理21经典信号处理22随机信号处理23 小波变换24 信息论转载 2016-06-08 15:48:30 · 1416 阅读 · 0 评论 -
图像配准的步骤
目前,很难找到一种普适的方法能够应对所有的配准情况,任何一种配准算法都必须考虑图像的成像原理、几何变形、噪声影响、配准精度等因素。不过,从原理上将,配准算法可以大致分为以下四个步骤:(1)特征提取采用人工或者自动的方法检测图像中的不变特征,如:闭合区域、边缘、轮廓、角点等。特征提取算法需要满足三个条件(a)显著性,所提取的特征应该是比较明显的,分布广泛的、易于提取的特征;(b)抗噪转载 2016-06-08 15:38:04 · 9391 阅读 · 0 评论 -
图像的变换模型
From: 遥感图像拼接算法研究 1 刚体变换2 仿射变换3 投影变换 投影变换(Projective Transformation)是指变换过程中,图像中的直线只保持“平4 非线性变换转载 2016-06-07 15:37:10 · 1773 阅读 · 0 评论 -
图像配准中的变换操作
对所有图像配准技术最根本的问题是找到适当的图像转换或者映射类型以正确匹配两幅图像。常见的配准转换包括:刚体变化、仿射变换、投影变换、非线性变化。转载 2016-06-07 15:33:02 · 1628 阅读 · 0 评论 -
opencv实现最基本的图像配准
简介 本篇是对基于opencv实现图像配准的实现笔记。基本原理 可以参考如下流程: 大致操作: 1、先拍摄两张有相同区域的图片,注意图片尺寸保持一致。 2、分别提取出图像的特征点(如果图像质量很差的话,可能需要先做些预处理操作)。 3、根据图像特征点,对它们做特征点匹配转载 2016-06-07 15:29:08 · 10044 阅读 · 0 评论 -
基于特征的图像配准
图像配准算法一般可分为基于图像灰度统计特性配准算法、基于图像特征配准算法和基于图像理解的配准算法。 基于特征的图像配准算法的核心步骤为:特征提取、特征匹配、模型参数估计、图像变换和灰度插值。 下面把论坛中一些人的看法在此总结一下,便于以后参考: gordon3000:再两幅图像上找到足够的同名点对,然后用多项式模型强行纠正。大小、旋转、转载 2016-06-07 15:24:16 · 11273 阅读 · 0 评论 -
图像配准简介
图像配准在目标检测、模型重建、运动估计、特征匹配,肿瘤检测、病变定位、血管造影、地质勘探、航空侦察等领域都有广泛的应用。每一种配准方法通常都针对某个具体问题而设计的,众多方法中,唯一的共性就是每个配准问题最终都要在变换空间中寻找一种最有的变换,这种变换能够使两幅图像之间在某种意义上达到匹配,但对于不同的应用领域,对图像类型的要求不同,就需要具体问题具体分析。有研究者根据待配准图像之间的关系转载 2016-06-07 15:23:36 · 1781 阅读 · 0 评论 -
去交错Deinterlace算法介绍
转自点击打开链接描述一个动态影像是由一连串连续的静态影像所组成的,其中每一个静态影像称为帧(frame),而动态影像中每秒所包含静态影像的数量则称为帧(速)率(frame per second, fps)。而在显示器上显示动态影像的方式有两种:· 渐进扫描:或称为逐行扫描。将每一帧从左至右、由上至下,逐一的将所有的画素显示出来。·转载 2017-03-10 17:06:27 · 2383 阅读 · 0 评论