英伟达(NVIDIA)系列显卡(GPU)技术指标对比排行

本文对比了NVIDIA显卡中Pascal与Maxwell架构下多个型号的性能参数,包括CUDA核心数量、主频、超频等关键指标,并区分了它们在台式机与笔记本电脑上的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

性能概览



关于N卡架构发展史详见本人前篇博客 点击打开链接

Pascal(帕斯卡)架构

显卡名称cuda核心数量主频(MHz)超频(MHz)存储速度显存配置位宽带宽(GB/秒应用类型
NVIDIA TITAN X35841417153110Gbps12GB GDDR5X384-Bit480台式机
GeForce GTX 108025601556173310Gbps8GB GDDR5X256-Bit320台式机、笔记本
GeForce GTX
1070
2048144216458Gbps8GB GDDR5X256-Bit265台式机、笔记本
GeForce GTX
1060
1280150617088Gbps8GB GDDR5X192-Bit192台式机、笔记本
GeForce GTX
1050Ti
768129013927Gbps4 GB GDDR5128-Bit112台式机
GeForce GTX
1050
640135414557Gbps4 Gb GDDr5128-Bit112台式机


Maxwell(麦克斯韦)架构

显卡名称cuda核心数量主频(MHz)超频(MHz)显存频率显存配置位宽带宽(GB/秒应用类型
GTX TITAN X3072100010757Gbps12GB GDDR5384-bit336.5台式机
GeoForce GTX 980 Ti2816100010757Gbps6 GB GDDR5384-bit336.5台式机
GeoForce GTX 9802048112612167Gbps4 GB GDDR5256-bit224台式机、笔记本 
GeoForce GTX 980M 15361038 2500 MHz4GB/8GB GDDR5256-bit160笔记本
GeoForce GTX 9701664105011787Gbps4GB GDDR5256-bit224台式机
GeoForce GTX 970M1280924 2500MHz3GB/6GB  GDDR5256-bit120笔记本
GeoForce GTX  9601024112711787Gbps2GB GDDR5128-bit112台式机
GeoForce GTX 965M1024944 2500MHzGDDR5128-bit80笔记本
GeoForce GTX 960M6401096 2500MHzGDDR5128-bit80笔记本
GeoForce GTX 950768102411886,。6Gbps2GB GDDR5128-bit105.6台式机
GeoForce GTX 950M640914 1000/2500MHzDDR3/DDR5128-bit32/80笔记本

### 关于NVIDIA GTX A系列显卡的技术规格与信息 目前市场上主要的独立笔记本电脑图形处理单元品牌为NVIDIA和AMD,其中专注于NVIDIA产品线的研究更为常见[^1]。然而,在具体讨论到GTX A系列时需要注意的是,实际上并不存在名为“GTX A系列”的官方命名序列。 可能存在的混淆来源于不同代际的产品或是其他特定型号中的“A”字母标记,比如某些专业级或面向数据中心市场的Quadro RTX A系列等。对于消费级别的GeForce GTX系列产品而言,并无直接冠以“A系列”的实例存在。 #### 可能引起误解的原因分析 - **市场宣传材料差异**:厂商可能会通过不同的营销手段来突出产品的特性,有时会采用一些非正式名称。 - **技术迭代更新**:随着技术的进步和发展,旧有的命名方式会被新的体系所取代,这可能导致资料查询上的困难。 为了获取最准确的信息建议查阅最新的官方文档或者访问[NVIDIA官方网站](https://www.nvidia.com/)进行确认。 ```python import requests from bs4 import BeautifulSoup def get_nvidia_product_info(): url = "https://www.nvidia.com/en-us/geforce/graphics-cards/" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') # 这里仅作为示例展示如何抓取网页数据,实际应用需遵循网站API接口规范 product_listings = [] for item in soup.select('.product-list-item'): title = item.find('h2').text.strip() description = item.find('p').text.strip() product_listings.append((title, description)) return product_listings[:5] print(get_nvidia_product_info()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值