AI大数据在工业制造的应用情况

本文探讨了AI在工业制造中的应用,包括工艺优化和生产力提升。AI通过大数据模型预测关键工艺步骤结果,指导工艺参数设定,提高产品良率。在设备调度方面,AI决策提升了效率。实践中,虽然遇到数据清洗和知识产权保护等问题,但AI在工艺步骤A和X1、X2中已展现潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AI应用方向

在工业制造中,为了提升良率,工艺工程师们费尽心力,想了各种方法,不断探索,来控制稳定性,减少defect,提高效率,等等。
基础系统:MES,RTD/RTS/APS,EAP,SPC,AHMS,AGV
进阶系统:FDC,APC,DOE,RMS,YMS,MCS
引入AI的系统:R2R,APC

在Semicon智能制造论坛上,可以看到,时下最流行的话题是“Smart Factory”,无人化工厂。
AI可以应用于:工艺,制造执行,生产力,供应链,等等方面

AI for 工艺优化

一种典型场景是:
关键制作步骤STEP A的结果,会在一定范围内浮动,通过后续步骤STEP B可以进行微调,使得产品进入SPEC内。
而量测采样率低,无法得到每个产品STEP A的结果数据,STEP B有一定的盲区。
通过建立AI大数据模型,可以预测STEP A的结果数据,进而指导STEP B的工艺参数设定,提升产品良率。
工具:Apply R2R

AI for 生产力提升

设备智能调度
ERP:demand,capacity,planning
MES:机台,Yield

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值