基于Matlab的滚动轴承故障诊断系统

目  录
摘  要 I
Abstract II
第一章 绪论 - 1 -
1.1 本课题研究的主要意义 - 1 -
1.2 滚动轴承故障诊断方法 - 2 -
1.3 滚动轴承故障诊断技术的发展概况 - 3 -
1.4 滚动轴承故障诊断技术的发展方向 - 5 -
1.5 本课题主要研究内容 - 5 -
第二章 滚动轴承的故障特征分析 - 6 -
2.1 概述 - 6 -
2.2 滚动轴承的典型结构 - 6 -
2.3 滚动轴承的主要失效形式及原因 - 7 -
2.4 滚动轴承的几何参数 - 8 -
2.5 滚动轴承的特征频率 - 9 -
2.6 滚动轴承的振动特性 - 10 -
2.6.1 滚动轴承的固有振动 - 11 -
2.6.2 轴承构造引起的振动 - 12 -
2.6.3 轴承装配不正确、轴颈偏斜产生的振动 - 13 -
2.6.4 精加工波纹度引起的振动 - 13 -
2.6.5 滚动轴承的故障引起振动 - 13 -
第三章 滚动轴承故障诊断方法研究 - 16 -
3.1 概述 - 16 -
3.2 时域分析的特征参数 - 16 -
3.3 频域分析的特征参数 - 18 -
第四章 轴承故障诊断系统总体设计 - 22 -
4.1 概述 - 22 -
4.2 Matlab软件简介 - 22 -
4.3 滚动轴承故障诊断系统总体设计 - 24 -
4.3.1 系统界面子系统 - 24 -
4.3.2 轴承特征频率计算子系统 - 25 -
4.3.3 数据加载子系统 - 26 -
4.3.4 信号模拟子系统 - 27 -
4.3.5 时域分析子系统 - 28 -
4.3.6 频域分析子系统 - 31 -
4.3.7 打印子系统 - 32 -
第五章 轴承实测信号处理 - 33 -
5.1 概述 - 33 -
5.2 模拟合成信号 - 33 -
5.3 模拟合成信号分析 - 34 -
5.4 轴承实测信号分析 - 35 -
结 论 - 38 -
参考文献 - 39 -
致 谢 - 41 -
附录A 频域分析系统程序 - 42 -
1.4 滚动轴承故障诊断技术的发展方向
近些年,故障诊断的新技术和新方法层出不穷,人工智能和计算机在轴承故障诊断中的应用越来越广泛,今后的发展方向主要体现在以下方面:
1.时域分析和频谱分析在轴承故障诊断中的应用将日趋完善;
2.对于轴承故障诊断的理论和方法进一步深入研究,并且各种研究成果将会逐步应用到实际生产;
3.故障诊断智能系统进一步的深入研究,多种轴承故障分析方法相结合,如小波神经网络、模糊识别与小波分析相结合等新分析方法应用智能专家系统,提高诊断的效率和准确率;
4.随着计算机和网络技术的发展,远程故障诊断将是现代故障诊断发展的一个重要的方向。
1.5 本课题主要研究内容
本文分析研究了滚动轴承的常见失效形式及其特征,总结滚动轴承的振动机理和振动信号特点,研究了滚动轴承信号处理及故障诊断的方法,搭建了滚动轴承故障诊断系统,采用较为先进、成熟的故障诊断方法,对滚动轴承进行故障诊断。本文的主要内容如下:
第一章:绪论。简要介绍了本课题研究的意义、滚动轴承故障诊断方法、滚动轴承故障诊断技术发展概况、发展方向。
第二章:滚动轴承的故障特征分析。分析滚动轴承的主要失效形式和原因,分析计算滚动轴承的理论特征频率和固有振动频率,研究滚动轴承的故障信号特征。
第三章:滚动轴承故障诊断方法研究。包括时域方法、频域方法,对各种方法的特点进行了比较。
第四章:滚动轴承故障诊断系统总体设计。在滚动轴承故障诊断方法理论的基础上搭建基于Matlab的滚动轴承故障诊断系统,对软件系统进行总体设计。
第五章:滚动轴承实测信号分析。通过对采集的滚动轴承实测信号分析滚动轴承实测信号分析,验证各种诊断方法的优劣和滚动轴承的故障特征。

%dpp.m文件
axheight=0.3;
axweith=0.7;
axlow=0.2;
axleft=0.1;
dif=0.2;

%绘出原始信号 
subplot(2,1,1)
subplot('position',[axleft axlow+2*dif axweith axheight]);
plot(s);
Ylabel('s');
title('原始信号');
%绘出倒频谱
ht=findobj(gcf,'tag','pinyufig');
hxb1=findobj(ht,'tag','cypled');
dt=str2double(get(hxb1,'String'));
hxb2=findobj(ht,'tag','xxed');
f1=str2double(get(hxb2,'String'));
hxb3=findobj(ht,'tag','sxed');
f2=str2double(get(hxb3,'String'));
dt=1/dt;N=1024;     %采样间隔和数据长度
n=0:N-1;            %采用时间序列
t=n*dt;        
y=fft(s);           %信号进行傅里叶变换
f=n/(dt*N)
subplot(2,1,2)
subplot('position',[axleft axlow axweith axheight]);
yy= real(ifft(log(abs(fft(s)))));
plot(f(1:N/2),abs(yy(1:N/2)));xlim([f1 f2]);
title('倒频谱')
xlabel('频率/Hz');
ylabel('幅值');
grid on;

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shejizuopin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值