目 录
摘 要 I
Abstract II
第一章 绪论 - 1 -
1.1 本课题研究的主要意义 - 1 -
1.2 滚动轴承故障诊断方法 - 2 -
1.3 滚动轴承故障诊断技术的发展概况 - 3 -
1.4 滚动轴承故障诊断技术的发展方向 - 5 -
1.5 本课题主要研究内容 - 5 -
第二章 滚动轴承的故障特征分析 - 6 -
2.1 概述 - 6 -
2.2 滚动轴承的典型结构 - 6 -
2.3 滚动轴承的主要失效形式及原因 - 7 -
2.4 滚动轴承的几何参数 - 8 -
2.5 滚动轴承的特征频率 - 9 -
2.6 滚动轴承的振动特性 - 10 -
2.6.1 滚动轴承的固有振动 - 11 -
2.6.2 轴承构造引起的振动 - 12 -
2.6.3 轴承装配不正确、轴颈偏斜产生的振动 - 13 -
2.6.4 精加工波纹度引起的振动 - 13 -
2.6.5 滚动轴承的故障引起振动 - 13 -
第三章 滚动轴承故障诊断方法研究 - 16 -
3.1 概述 - 16 -
3.2 时域分析的特征参数 - 16 -
3.3 频域分析的特征参数 - 18 -
第四章 轴承故障诊断系统总体设计 - 22 -
4.1 概述 - 22 -
4.2 Matlab软件简介 - 22 -
4.3 滚动轴承故障诊断系统总体设计 - 24 -
4.3.1 系统界面子系统 - 24 -
4.3.2 轴承特征频率计算子系统 - 25 -
4.3.3 数据加载子系统 - 26 -
4.3.4 信号模拟子系统 - 27 -
4.3.5 时域分析子系统 - 28 -
4.3.6 频域分析子系统 - 31 -
4.3.7 打印子系统 - 32 -
第五章 轴承实测信号处理 - 33 -
5.1 概述 - 33 -
5.2 模拟合成信号 - 33 -
5.3 模拟合成信号分析 - 34 -
5.4 轴承实测信号分析 - 35 -
结 论 - 38 -
参考文献 - 39 -
致 谢 - 41 -
附录A 频域分析系统程序 - 42 -
1.4 滚动轴承故障诊断技术的发展方向
近些年,故障诊断的新技术和新方法层出不穷,人工智能和计算机在轴承故障诊断中的应用越来越广泛,今后的发展方向主要体现在以下方面:
1.时域分析和频谱分析在轴承故障诊断中的应用将日趋完善;
2.对于轴承故障诊断的理论和方法进一步深入研究,并且各种研究成果将会逐步应用到实际生产;
3.故障诊断智能系统进一步的深入研究,多种轴承故障分析方法相结合,如小波神经网络、模糊识别与小波分析相结合等新分析方法应用智能专家系统,提高诊断的效率和准确率;
4.随着计算机和网络技术的发展,远程故障诊断将是现代故障诊断发展的一个重要的方向。
1.5 本课题主要研究内容
本文分析研究了滚动轴承的常见失效形式及其特征,总结滚动轴承的振动机理和振动信号特点,研究了滚动轴承信号处理及故障诊断的方法,搭建了滚动轴承故障诊断系统,采用较为先进、成熟的故障诊断方法,对滚动轴承进行故障诊断。本文的主要内容如下:
第一章:绪论。简要介绍了本课题研究的意义、滚动轴承故障诊断方法、滚动轴承故障诊断技术发展概况、发展方向。
第二章:滚动轴承的故障特征分析。分析滚动轴承的主要失效形式和原因,分析计算滚动轴承的理论特征频率和固有振动频率,研究滚动轴承的故障信号特征。
第三章:滚动轴承故障诊断方法研究。包括时域方法、频域方法,对各种方法的特点进行了比较。
第四章:滚动轴承故障诊断系统总体设计。在滚动轴承故障诊断方法理论的基础上搭建基于Matlab的滚动轴承故障诊断系统,对软件系统进行总体设计。
第五章:滚动轴承实测信号分析。通过对采集的滚动轴承实测信号分析滚动轴承实测信号分析,验证各种诊断方法的优劣和滚动轴承的故障特征。
%dpp.m文件
axheight=0.3;
axweith=0.7;
axlow=0.2;
axleft=0.1;
dif=0.2;
%绘出原始信号
subplot(2,1,1)
subplot('position',[axleft axlow+2*dif axweith axheight]);
plot(s);
Ylabel('s');
title('原始信号');
%绘出倒频谱
ht=findobj(gcf,'tag','pinyufig');
hxb1=findobj(ht,'tag','cypled');
dt=str2double(get(hxb1,'String'));
hxb2=findobj(ht,'tag','xxed');
f1=str2double(get(hxb2,'String'));
hxb3=findobj(ht,'tag','sxed');
f2=str2double(get(hxb3,'String'));
dt=1/dt;N=1024; %采样间隔和数据长度
n=0:N-1; %采用时间序列
t=n*dt;
y=fft(s); %信号进行傅里叶变换
f=n/(dt*N)
subplot(2,1,2)
subplot('position',[axleft axlow axweith axheight]);
yy= real(ifft(log(abs(fft(s)))));
plot(f(1:N/2),abs(yy(1:N/2)));xlim([f1 f2]);
title('倒频谱')
xlabel('频率/Hz');
ylabel('幅值');
grid on;