正态分布与均匀分布之间的变换

一、任何分布都能化为 [ 0 , 1 ] [0,1] [0,1]均匀分布

假设 F X ( a ) = p ( x ≤ a ) F_X(a)=p(x\le a) FX​(a)=p(x≤a)为累积分布函数, f ( x ) f(x) f(x)为概率密度函数, F X ( a ) = ∫ − ∞ a f ( x ) d x F_X(a)=\int_{-\infty}^af(x)dx FX​(a)=∫−∞a​f(x)dx,则存在如下等式
P ( F X ( X ) ≤ a ) = P ( X ≤ F X − 1 ( a ) ) = F X ( F X − 1 ( a ) ) = a P(F_X(X)\le a)=P(X\le F^{-1}_X(a))=F_X(F^{-1}_X(a))=a P(FX​(X)≤a)=P(X≤FX−1​(a))=FX​(FX−1​(a))=a
则累积分布函数 Y = F X ( X ) Y=F_X(X) Y=FX​(X)服从 [ 0 , 1 ] [0,1] [0,1]间的均匀分布。
二、通过Box-Muller-Wiener算法,可以实现正态分布与均匀分布之间的转换
1.均匀分布转为正态分布

两个独立的 [ 0 , 1 ] [0,1] [0,1]均匀分布,独立的随机变量为 A , B A,B A,B,以其中一个为角度 2 π A 2\pi A 2πA,另一个随机变量为半径 − 2 l o g B \sqrt{-2logB} −2logB

​作为半径,在极坐标下可以得到一个点 ( X , Y ) (X,Y) (X,Y),服从二维标准正态分布。
2.正态分布转为均匀分布

正态分布到均匀分布的逆过程可以理解为 A = arctan ⁡ ( Y X ) 2 π + 0.5 A=\frac{\arctan(\frac{Y}{X})}{2\pi}+0.5 A=2πarctan(XY​)​+0.5, B = exp ⁡ ( − X 2 + Y 2 2 ) B=\exp(-\frac{X^2+Y^2}{2}) B=exp(−2X2+Y2​)
————————————————
https://blog.csdn.net/weixin_37895339/article/details/80380346

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值