测试Token indices is longer than the maximum sequence length for this model (3013602 > 131072)

Error:Token indices sequence length is longer than

使用allenai/tulu-3-sft-mixture这个数据集,tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B")这个tokenizer,进行tokenization操作,不想截断truncation,看一下tokenization之后的长度。
下面是代码示例:

# 定义tokenize函数,假设数据集的每条记录包含一个'messages'字段,里面是一个包含文本的字典
def tokenize_function(examples):
    # 合并所有messages中的content
    texts = []
    for msg in examples['messages']:
        if isinstance(msg, dict) and 'content' in msg:  # 确保每个msg是字典并且包含content字段
            texts.append(msg['content'])
        else:
            print("Unexpected message format:", msg)  # 如果消息格式异常,进行打印调试

    prompt = " ".join(texts)  # 拼接所有的文本内容
    tokenized = tokenizer(prompt, padding=False, truncation=False)  # 不进行填充和截断
    length = len(tokenized['input_ids'])  # 获取token的长度

    # 返回格式要符合map要求:必须是列表
    return {
        'tokenized_prompt': tokenized['input_ids'],  # 返回一个list
        'length': [length]  # 返回长度时,确保是list类型
    }

# 对数据集进行tokenization
tokenized_datasets = dataset.map(tokenize_function, batched=False)

遇到错误:

Map: 92%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████▌ | 860433/939343 [27:59<01:20, 980.52 examples/s]Token indices sequence length is longer than the specified maximum sequence length for this model (3013602 > 131072). Running this sequence through the model will result in indexing errors

注:我没有后续需求,只是进行tokenization,所以这个错误不影响我。但是我还是想了解一些事情。所以产生了这篇博客。

下面是GPT4o的回答:

这个错误的意思是输入序列(Token indices sequence)的长度超过了模型的最大允许长度,导致模型无法正常处理。具体来说:

  • 3013602 表示你输入序列的长度(即 token 数量)。
  • 131072 是该模型的最大序列长度。这个数字通常是由模型的架构(例如 Transformer 模型的最大输入长度)限制的,表示模型可以处理的最大 token 数量。

为什么会发生这种情况?

  1. 输入文本过长:如果你在进行模型推理或训练时使用了非常长的文本,可能会导致 token 的总数量超出了模型的最大输入长度。
  2. 错误的 Tokenization 设置:在处理数据时,可能没有正确地对文本进行截断(truncation),导致输入的 token 数量过多。
  3. 数据加载错误:可能是数据处理或批处理过程中,多个长文本被不小心拼接在一起,从而导致了超长的 token 序列。

解决办法:

  1. 检查输入序列的长度:可以检查输入文本的长度,确认是否存在异常或过长的文本。

  2. 使用截断(Truncation):你可以确保在模型中使用 truncation=True 参数,这样模型会自动截断超过最大长度的输入。例如:

    tokenized_input = tokenizer(text, truncation=True, max_length=131072)
    

    这会将超过 131072 长度的文本截断。

  3. 批处理时进行分割:如果你正在使用批处理(batching),你可能需要将长文本切分成多个较短的部分,逐个输入模型进行处理。

  4. 检查数据预处理步骤:确保在数据加载和处理时,文本没有被不必要地拼接在一起或被错误地拼接成过长的序列。

示例:使用 truncation=True 处理输入

假设你正在使用 Hugging Face 的 tokenizer,你可以像下面这样确保模型不会遇到过长的输入:

tokenized_input = tokenizer(text, truncation=True, max_length=131072)

总结

这个错误表明输入序列过长,超出了模型的最大输入长度,解决方法是确保在输入时对文本进行截断或分割。

3013602 是一个样本的长度吗?

是的,3013602 是某个输入样本的 token 数量,即该输入序列中的 所有 tokens(标记) 的总数。每个 token 通常对应于一个词语、字符或子词单位,具体取决于使用的 tokenization 方法。

例如,若文本包含很多单词、符号或字符,经过 tokenization 后,文本就会被分割成多个 tokens。这里的 3013602 表示的是该样本在被 tokenization 后所生成的总 tokens 数量。

131072 是该模型的最大序列长度

序列长度(sequence length) 指的是一个输入样本中,经过 tokenization 处理后形成的 tokens 数量。对于大多数 NLP 模型来说,序列长度 就是模型一次性能够接受并处理的 token 数量。超过该长度的输入将导致错误或截断。

  • 131072 是该模型的 最大序列长度,即该模型可以接受的 最大 token 数量。超出这个长度的文本将不能直接传入模型进行推理或训练。

序列长度是如何计算得来的?

序列长度是由模型架构和其训练时的限制决定的。一般来说,Transformer 架构(例如 BERT、GPT 等)对于输入的最大长度是有上限的,通常是模型设计时通过以下几个因素设定的:

  1. 位置编码(Positional Encoding)

    • Transformer 通过位置编码来处理序列中 tokens 的顺序。位置编码会将一个固定长度的向量添加到每个 token 上,以帮助模型理解 token 之间的相对位置。因此,模型必须在设计时设定一个最大序列长度,以便为每个 token 提供足够的位置信息。
  2. 计算资源限制

    • 模型的最大序列长度会受到计算资源(如内存)的限制。在处理长序列时,计算复杂度呈平方增长(O(n²)),这使得较长的序列会消耗更多的计算资源(包括内存)。因此,最大序列长度往往与模型训练时的硬件资源和效率目标有关。
  3. 模型架构设计

    • 不同的模型会有不同的最大序列长度。比如,BERT 的最大序列长度通常是 512,而一些较大的模型可能支持 1024 或更长的序列。

计算例子

假设你的输入文本非常长,tokenizer 对它进行处理时,会根据以下过程来计算 token 数量:

  1. 文本分词(Tokenization):模型会把文本分割成若干个单词、字符或子词。每个单元就代表一个 token。例如,句子 “I have a car” 可能被拆分成 4 个 tokens:[“I”, “have”, “a”, “car”]。

  2. 计算总 tokens 数:如果你的文本经过 tokenization 后包含很多这样的 token,就会计算出它们的总数量。这就是序列的长度。例如,如果输入包含了 3,013,602 个 tokens,那么 3013602 就是你当前输入的序列长度。

总结

  • 3013602 是某个输入样本的 token 数量(即经过 tokenization 处理后的总 token 数量)。
  • 131072 是该模型的最大序列长度,即模型每次可以接受的最大 token 数量。超过此限制的输入将导致错误或需要截断。
  • 序列长度 就是输入文本经过 tokenization 处理后的 token 数量,具体的长度由文本的长度、tokenization 方法、模型架构等因素决定。

BERT 的最大序列长度通常是 512解释

BERT 的最大序列长度通常是 512 这句话的意思是,BERT 模型在进行训练或推理时,能够处理的单个输入文本的最大 token 数量为 512。也就是说,当输入的文本经过 tokenization(分词) 处理后,生成的 token 数量如果超过 512,模型就无法直接处理,通常会发生以下两种情况之一:

  1. 截断(Truncation):超过 512 的 tokens 会被丢弃,只保留前 512 个 tokens。
  2. 错误或无法处理:如果没有做截断,模型就会因为输入过长而抛出错误。

举个例子说明

假设我们有以下一句话:

“BERT has been designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. This allows the model to be fine-tuned with just one additional output layer to create state-of-the-art models for a wide variety of tasks, such as question answering, language inference, and others.”

如果我们使用 BERT tokenizer 对该文本进行分词,得到的 tokens 可能如下所示:

  1. “BERT” -> token1
  2. “has” -> token2
  3. “been” -> token3
  4. “designed” -> token4

假设总共生成了 600 tokens(这取决于分词器和文本内容),而 BERT 的最大序列长度是 512

  • 如果输入文本生成了 超过 512 个 tokens,在默认情况下,BERT 会进行 截断,即只保留前 512 个 tokens,后面的 tokens 将被丢弃。
  • 如果你没有进行截断而是尝试传入 600 tokens,BERT 会抛出错误,告知序列长度超过了模型的最大限制。

为什么是 512?

  • 512 是 BERT 模型在设计时的最大输入长度,这个长度是在设计时基于实际的硬件和计算资源做出的选择。BERT 在每个输入 token 上都要计算注意力机制(Attention),所以输入序列的长度会直接影响计算量。
  • 如果序列太长,模型的训练和推理会变得非常缓慢且占用大量内存。因此,BERT 选择了一个相对适中的长度(512),以确保能够有效地处理大多数文本任务,同时又能保证计算效率。

举例说明截断的情况

假设输入文本的总 token 数为 700 tokens,而 BERT 的最大序列长度为 512,那么:

  1. 如果设置了截断,模型会自动丢弃后面 188 tokens,只保留前 512 tokens,并将其送入模型。

    比如,前 512 tokens 可能对应如下:

    "BERT has been designed to pre-train deep bidirectional representations by jointly conditioning on both left..."
    
  2. 如果没有设置截断,BERT 会抛出一个错误,告知输入序列超出了最大长度。

BERT 模型的实际应用

在实际应用中,大多数文本不会达到 512 tokens。对于较短的文本(比如一句话或一段话),BERT 通常会处理得很好。但对于较长的文本(如长篇文章、文档等),就需要考虑如何处理长度超过 512 的情况。这时,通常有几种方式:

  1. 截断(Truncation):如果只是关心文本的前部分信息,可以直接截断文本,只保留前 512 个 tokens。
  2. 分割(Segmentation):如果需要保留完整的文本信息,可以将文本分割成多个小段,每段不超过 512 tokens,然后分别输入模型。
  3. 使用长文本模型:一些模型(如 Longformer、Reformer 等)设计时就考虑到了处理长文本,它们支持更长的输入序列。

总结

  • 512 tokens 是 BERT 模型能够处理的最大输入长度。
  • 这意味着输入文本经过 tokenization 后,总 token 数不能超过 512,否则需要进行截断或分割。
  • 这种限制是由模型架构和计算资源决定的,确保模型能够高效且准确地进行训练和推理。

后记

2024年12月29日11点28分于上海,在GPT4o大模型辅助下完成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值