丹尼尔·卡尼曼的前景理论(Prospect Theory):人类如何做决策?(中英双语)

丹尼尔·卡尼曼的前景理论:人类如何做决策?

📌 什么是前景理论?

前景理论(Prospect Theory) 是由 丹尼尔·卡尼曼(Daniel Kahneman)阿摩斯·特沃斯基(Amos Tversky) 于 1979 年提出的决策理论,解释了人们在风险和不确定性下如何做决策

与传统经济学假设的理性决策不同,前景理论发现:
人们在面对收益时更倾向于规避风险,而在面对损失时更容易冒险
损失带来的痛苦大于同等收益带来的快乐(损失厌恶,Loss Aversion)
人们关注相对变化(“参考点”),而非最终的财富

📌 简单来说,前景理论认为,人类决策不是完全理性的,而是受到心理偏差的影响。


📌 价值函数(Value Function)—— 损失的痛比收益的快乐更强烈

前景理论中的价值函数(Value Function) 描述了人们如何感知收益和损失:

V ( x ) = { x α , x ≥ 0 − λ ( − x ) α , x < 0 V(x) = \begin{cases} x^\alpha, & x \geq 0 \\ -\lambda (-x)^\alpha, & x < 0 \end{cases} V(x)={xα,λ(x)α,x0x<0

其中:

  • ( x x x ):收益或损失
  • ( α \alpha α )(通常取 0.88):收益或损失的感知强度
  • ( λ \lambda λ )(通常取 2.25):损失厌恶系数,表示人们对损失的敏感度大约是收益的 2.25 倍

📌 Python 代码:绘制前景理论的价值函数

下面是用 Python 绘制价值函数的代码,你可以运行后看到清晰的收益/损失曲线:

import numpy as np
import matplotlib.pyplot as plt

# 定义前景理论的价值函数
def value_function(x, alpha=0.88, lambda_=2.25):
    return np.where(x >= 0, x ** alpha, -lambda_ * (-x) ** alpha)

# 生成收益和损失数据
x = np.linspace(-10, 10, 400)  # 从 -10 到 10 的收益和损失
y = value_function(x)

# 绘制价值函数曲线
plt.figure(figsize=(8, 5))
plt.plot(x, y, label="Prospect Theory Value Function", color="b")
plt.axhline(0, color='black', linewidth=0.5)
plt.axvline(0, color='black', linewidth=0.5)
plt.xlabel("收益 / 损失")
plt.ylabel("主观价值")
plt.title("前景理论的价值函数:损失比收益更痛苦")
plt.legend()
plt.grid()
plt.show()

Output

在这里插入图片描述

📌 代码解读

负值区域(左侧)比正值区域(右侧)陡峭,说明人们对损失更加敏感
收益边际递减(右侧曲线变缓),说明越多的收益带来的额外快乐越少
损失厌恶系数 λ=2.25,意味着损失 1 元的痛苦 ≈ 获得 2.25 元的快乐

运行代码后,你会看到前景理论中的典型价值曲线:损失带来的心理痛苦远超同等金额的收益。


📌 前景理论的现实应用

📍 1. 投资决策

❌ 投资者更愿意持有亏损的股票,而非获利的股票

  • 股票盈利 10% 时,大部分人会“落袋为安”
  • 股票亏损 20% 时,人们却不愿卖出,而是继续等待翻盘
  • 这就是 “损失厌恶”,让人们在投资中做出不理性的决定

📍 2. 保险市场

📌 保险公司利用人们对低概率事件的恐惧来销售高价保险

  • 车祸、航班失事的概率很低,但很多人仍然愿意买高价保险
  • 因为人们高估了小概率事件发生的可能性

📍 3. 营销与定价

📌 商家利用参考点影响消费者决策

  • “原价 1000 元,现价 599 元” 的促销方式,让消费者感觉自己“赚了 401 元”
  • 但如果商家直接标 599 元,消费者就不会有这么强的购买冲动

📍 4. 赌博与彩票

📌 赌场和彩票公司利用人们对小概率事件的误判

  • 人们低估了亏钱的可能性,高估了中奖的概率
  • 赌场就是利用这一点赚大钱 🎰

📌 总结

📌 前景理论解释了人们在面临收益和损失时的非理性行为
📌 损失的痛苦远大于同等收益带来的快乐(损失厌恶)
📌 人们倾向于高估小概率事件(如彩票中奖),低估高概率事件(如保险赔付)
📌 这一理论被广泛应用于投资、保险、市场营销和消费者行为分析

如果你想成为更聪明的投资者和决策者,理解前景理论是至关重要的! 🚀📊


💡 你是否曾经因为损失厌恶而做出不理性的投资决策?欢迎在评论区分享你的经验! 🎯

Prospect Theory: Understanding Human Decision-Making Under Risk 🎯💡

📌 What Is Prospect Theory?

Prospect Theory, developed by Daniel Kahneman and Amos Tversky in 1979, is a behavioral economics theory that explains how people make decisions under risk and uncertainty.

Unlike traditional economic theories that assume rational decision-making, Prospect Theory shows that:
People tend to avoid risks when facing gains but take risks when facing losses
Losses feel more painful than equivalent gains feel pleasurable (Loss Aversion)
People evaluate outcomes relative to a reference point, rather than their absolute final wealth

📌 In simple terms, people are not purely rational when making decisions and are influenced by psychological biases.


📌 Value Function: Losses Hurt More Than Gains Feel Good

Prospect Theory proposes a value function to describe how people perceive gains and losses:

V ( x ) = { x α , x ≥ 0 − λ ( − x ) α , x < 0 V(x) = \begin{cases} x^\alpha, & x \geq 0 \\ -\lambda (-x)^\alpha, & x < 0 \end{cases} V(x)={xα,λ(x)α,x0x<0

Where:

  • ( x x x ) = gain or loss amount
  • ( α \alpha α ) (typically 0.88) = sensitivity to gains and losses
  • ( λ \lambda λ ) (typically 2.25) = loss aversion coefficient, meaning a loss of $1 feels about 2.25 times worse than a gain of $1 feels good

📌 Python Code: Plotting the Value Function

Below is a Python script to visualize the Prospect Theory value function, helping illustrate Loss Aversion:

import numpy as np
import matplotlib.pyplot as plt

# Define the value function for Prospect Theory
def value_function(x, alpha=0.88, lambda_=2.25):
    return np.where(x >= 0, x ** alpha, -lambda_ * (-x) ** alpha)

# Generate data for gains and losses
x = np.linspace(-10, 10, 400)  # From -10 to 10
y = value_function(x)

# Plot the value function
plt.figure(figsize=(8, 5))
plt.plot(x, y, label="Prospect Theory Value Function", color="b")
plt.axhline(0, color='black', linewidth=0.5)
plt.axvline(0, color='black', linewidth=0.5)
plt.xlabel("Gains / Losses")
plt.ylabel("Perceived Value")
plt.title("Prospect Theory Value Function: Losses Hurt More Than Gains Feel Good")
plt.legend()
plt.grid()
plt.show()

📌 Interpretation of the Chart

The loss side (left) is steeper than the gain side (right), showing that losses feel more painful than equivalent gains
Diminishing sensitivity to gains (curve flattens on the right), meaning that an extra $10K is more exciting for someone with $50K than for someone with $10M
Loss aversion coefficient (( λ \lambda λ) = 2.25), meaning that a $1 loss is psychologically equivalent to a $2.25 gain

Run the code and you’ll see a typical Prospect Theory curve demonstrating that the pain of losing exceeds the joy of winning.


📌 Real-World Applications of Prospect Theory

📍 1. Investment Behavior

📉 Investors hold onto losing stocks longer than they hold winning stocks (Loss Aversion)

  • Many investors sell a stock after a 10% gain but hold onto it after a 20% loss, hoping it will recover
  • This results in selling winners too early and losers too late, reducing portfolio performance

📍 2. Insurance Industry

📌 Insurance companies leverage people’s fear of low-probability events to sell expensive policies

  • Car accidents and plane crashes are rare, but people still buy high-priced insurance
  • People overestimate the probability of rare events

📍 3. Marketing & Pricing

📌 Retailers use reference points to influence consumer decisions

  • “Original Price: $1,000, Now: $599” is more effective than just pricing it at $599
  • Because consumers’ reference point is $1,000, they perceive a $401 “gain”

📍 4. Gambling & Lottery

📌 Casinos and lotteries exploit people’s misunderstanding of probabilities

  • People underestimate their chances of losing and overestimate their chances of winning
  • This is why casinos always make money 🎰

📌 Conclusion

📌 Prospect Theory explains why people behave irrationally when making decisions under risk
📌 Losses hurt more than equivalent gains feel good (Loss Aversion)
📌 People overestimate small probabilities (lottery) and underestimate large probabilities (insurance claims)
📌 The theory is widely used in investing, insurance, marketing, and behavioral finance

Understanding Prospect Theory can help you make smarter decisions and avoid psychological traps in investing and everyday life! 🚀📊


💡 Have you ever made a bad decision due to loss aversion? Share your experience in the comments! 🎯

后记

2025年2月22日14点18分于上海,在GPT4o大模型辅助下完成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值