博客系列提纲:李群与李代数入门到进阶
总计篇数:6篇
目标:通过6篇博客,从基础概念到复杂应用,系统介绍李群和李代数的理论、推导和应用,适合计算机系研究生学习和理解。
第1篇:李群与李代数的初识——从旋转矩阵到抽象群
博客链接:写给计算机系同学的李群与李代数(一):从旋转矩阵到抽象群
核心内容:
- 什么是李群:介绍李群的定义(既是群又具有光滑流形结构的数学对象),强调连续变换的概念。
- 常见李群示例:
- 特殊正交群 SO(n):旋转矩阵的集合。
- 特殊线性群 SL(n):行列式为1的矩阵。
- 欧几里得群 SE(n):刚体变换(旋转+平移)。
- 从旋转矩阵到李群:通过 SO(2) 和 SO(3) 的例子,展示矩阵如何构成群。
- 李代数的初步概念:李代数作为李群的“切空间”,通过矩阵指数映射(exponential map)连接李群和李代数。
- 数学公式与推导:
- 群的定义:单位元、逆、封闭性。
- 矩阵指数: e A = ∑ k = 0 ∞ A k k ! e^A = \sum_{k=0}^\infty \frac{A^k}{k!} eA=∑k=0∞k!Ak,展示如何从反对称矩阵生成旋转矩阵。
- SO(2) 的例子:推导 e θ B e^{\theta B} eθB 生成二维旋转矩阵,其中 B = [ 0 − 1 1 0 ] B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} B=[01−10]。
- 例子:
- 二维平面旋转(SO(2)):从角度 θ \theta θ 到矩阵 [ cos θ − sin θ sin θ cos θ ] \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} [cosθsinθ−sinθcosθ]。
- 三维旋转(SO(3))的简单说明。
- 几何意义与直观解释:
- 李群描述连续变换(如旋转、缩放)。
- 李代数捕获“无穷小变换”,类似速度与位置的关系。
- 目标:让读者理解李群和李代数的概念,建立直观认识。
第2篇:李代数的结构——以 so(n) 为例
博客链接:写给计算机系同学的李群与李代数(二):李代数的结构——以 so(n) 为例
核心内容:
- 李代数的定义:向量空间配以李括号 [ A , B ] = A B − B A [A, B] = AB - BA [A,B]=AB−BA。
- so(n) 的构造:介绍 so(n) 是特殊正交群 SO(n) 的李代数,包含所有 n×n 反对称矩阵。
- 反对称矩阵的性质:
- 定义: B T = − B B^T = -B BT=−B。
- so(3) 的基:三个独立的反对称矩阵 B 1 , B 2 , B 3 B_1, B_2, B_3 B1,B2,B3。
- 数学公式与推导:
- 验证 so(n) 矩阵通过矩阵指数映射生成 SO(n) 元素。
- so(3) 的李括号:计算 [ B i , B j ] [B_i, B_j] [Bi,Bj],展示李代数的封闭性。
- 推导矩阵指数的具体形式:例如,so(3) 中 e θ B i e^{\theta B_i} eθBi 生成绕某轴的旋转。
- 例子:
- so(2):只有一个基向量,生成二维旋转。
- so(3):三个基向量对应绕 x、y、z 轴的旋转。
- 几何意义与直观解释:
- 反对称矩阵表示“无穷小旋转”。
- 李括号描述旋转的非交换性(例如,先绕 x 轴再绕 y 轴与相反顺序不同)。
- 目标:深入理解李代数的代数结构,熟悉 so(n) 的具体形式。
第3篇:矩阵指数与李群-李代数对应
博客链接:写给计算机系同学的李群与李代数(三):矩阵指数与李群-李代数对应
核心内容:
- 矩阵指数映射的细节:从李代数到李群的桥梁。
- 指数映射的性质:
- 单参数子群: t ↦ e t B t \mapsto e^{tB} t↦etB。
- 非交换性: e A + B ≠ e A e B e^{A+B} \neq e^A e^B eA+B=eAeB(除非 [ A , B ] = 0 [A, B] = 0 [A,B]=0)。
- 数学公式与推导:
- so(3) 中 Rodrigues 公式:推导 e θ B e^{\theta B} eθB 表示绕轴旋转。
- Baker-Campbell-Hausdorff 公式(简化版):近似 e A e B ≈ e A + B + 1 2 [ A , B ] e^A e^B \approx e^{A+B+\frac{1}{2}[A,B]} eAeB≈eA+B+21[A,B]。
- 例子:
- so(3) 中绕任意轴的旋转:从反对称矩阵到旋转矩阵。
- SE(3) 的指数映射:推导刚体变换(旋转+平移)。
- 几何意义与直观解释:
- 指数映射将“速度”(李代数)转化为“位置”(李群)。
- 类比:李代数是“切线”,李群是“曲线”。
- 目标:掌握指数映射的计算和意义,理解李群与李代数的动态关系。
第4篇:李括号与结构常数
博客链接:写给计算机系同学的李群与李代数(四):李括号与结构常数
核心内容:
- 李括号的深入探讨: [ A , B ] = A B − B A [A, B] = AB - BA [A,B]=AB−BA 作为李代数的核心运算。
- 结构常数:李代数基向量的李括号关系 [ B i , B j ] = ∑ k c i j k B k [B_i, B_j] = \sum_k c_{ij}^k B_k [Bi,Bj]=∑kcijkBk。
- 数学公式与推导:
- so(3) 的结构常数:推导 c i j k c_{ij}^k cijk 的具体值。
- 验证 Jacobi 恒等式: [ [ A , B ] , C ] + [ [ B , C ] , A ] + [ [ C , A ] , B ] = 0 [[A, B], C] + [[B, C], A] + [[C, A], B] = 0 [[A,B],C]+[[B,C],A]+[[C,A],B]=0。
- 例子:
- so(3) 的李括号计算:展示旋转的非交换性。
- su(2) 的结构常数(简单介绍,作为对比)。
- 几何意义与直观解释:
- 李括号描述变换的“扭曲”或非交换效应。
- 结构常数量化李代数的“形状”。
- 目标:理解李代数的代数性质,为后续应用打基础。
第5篇:MASA 与李代数的分解
博客链接:写给计算机系同学的李群与李代数(五):最大阿贝尔子代数与李代数的分解
核心内容:
- MASA 的定义:最大阿贝尔子代数(Maximal Abelian Subalgebra),其中所有元素两两交换( [ A , B ] = 0 [A, B] = 0 [A,B]=0)。
- so(n) 中的 MASA:
- so(3) 的 MASA:一维子空间(例如绕某轴的旋转)。
- so(4) 的 MASA:二维子空间。
- 数学公式与推导:
- 验证 MASA 的交换性。
- 推导 so(n) 中 MASA 的维数: ⌊ n / 2 ⌋ \lfloor n/2 \rfloor ⌊n/2⌋。
- 例子:
- so(3):MASA 对应单一旋转轴。
- so(4):MASA 对应两组独立的旋转平面。
- 几何意义与直观解释:
- MASA 表示“最简单的”变换集合,类比于“坐标轴”。
- 提供分解复杂变换的框架。
- 目标:理解 MASA 的作用,探索李代数的结构分解。
第6篇:李群与李代数在计算机中的应用
博客链接:写给计算机系同学的李群与李代数(六):李群与李代数在计算机中的应用
核心内容:
- 李群与李代数的实际应用:
- 计算机图形学:SO(3) 和 SE(3) 用于 3D 旋转和刚体变换。
- 机器人学:运动规划中的李代数优化。
- 机器学习:李群上的优化问题(例如流形学习)。
- 数学公式与推导:
- SE(3) 的李代数 se(3):推导螺旋运动(screw motion)。
- 李代数上的导数:用于梯度下降优化。
- 例子:
- 3D 动画中的插值:使用 so(3) 的指数映射实现平滑旋转。
- 机器人手臂的运动规划:SE(3) 的应用。
- 几何意义与直观解释:
- 李代数提供局部线性化,简化非线性优化。
- 李群保持几何约束(如正交性)。
- 目标:展示李群和李代数如何解决实际问题,激发读者兴趣。
说明
- 由浅入深:从基础定义(第1篇)到具体结构(第2-4篇),再到高级主题(第5篇)和应用(第6篇),逐步加深难度。
- 涵盖知识点:
- 反对称矩阵 B , B i B, B_i B,Bi 作为李代数生成元,通过矩阵指数生成旋转矩阵(第1-3篇)。
- so(n) 作为 SO(n) 的李代数(第2-3篇)。
- MASA 的定义和应用(第5篇)。
- 更深入内容:结构常数、Jacobi 恒等式、SE(3) 等。
- 数学与直观并重:每篇包含公式推导、具体例子和几何解释,确保理论严谨且易于理解。
- 面向计算机系:强调与计算机图形学、机器人学、机器学习的联系,突出实用性。
后记
2025年4月12日于上海,在grok 3大模型辅助下完成。