Puzzle框架:基于NAS的推理优化LLM的突破性贡献

Puzzle框架:基于NAS的推理优化LLM的突破性贡献

近年来,大型语言模型(LLM)的性能显著提升,但其高昂的推理成本限制了广泛应用。NVIDIA团队在论文《PUZZLE: DISTILLATION-BASED NAS FOR INFERENCE-OPTIMIZED LLMS》中提出了Puzzle框架,通过神经架构搜索(NAS)和知识蒸馏技术,优化LLM的推理效率,同时保留其性能。本博客面向深度学习研究者,详细剖析Puzzle框架的贡献及其核心原理。

Paper: https://arxiv.org/pdf/2411.19146

主要贡献

Puzzle框架针对LLM推理优化的痛点,提出了一系列创新方法,其贡献可归纳为以下四点:

  1. 提出分解式NAS框架:Puzzle首次将分解式NAS大规模应用于LLM,探索数十亿参数模型的架构空间,优化硬件特定约束(如吞吐量、延迟、内存)。通过块级本地蒸馏(BLD)和混合整数规划(MIP),Puzzle显著降低训练成本,仅需不到50B token即可完成优化,相比原始模型的15T token大幅减少。

  2. 推出高效模型Nemotron-51B:基于Llama-3.1-70B-Instruct,Puzzle衍生出Llama-3.1-Nemotron-51B-Instruct模型,在单块NVIDIA H100 GPU上实现2.17倍推理吞吐量提升,同时保留98.4%的原始性能。该模型针对FP8量化和非均匀架构优化,树立了商业应用的效率标杆。

  3. 优化真实推理场景:Puzzle针对实际推理引擎和量化水平(如FP8)优化,增强了TensorKT-LLM支持非均匀块和变头数注意力机制。这种硬件感知优化确保模型在真实部署场景中的高效性和成本效益。

  4. 提供架构与硬件效率分析:Puzzle通过实证分析揭示了架构选择与硬件效率的关系,为未来硬件感知LLM设计提供了指导性洞见。

核心原理

Puzzle框架通过三个阶段实现推理优化:块级本地蒸馏(BLD)、MIP架构搜索和全局知识蒸馏(GKD)。以下逐一解析其原理。

1. 块级本地蒸馏(BLD)

在这里插入图片描述

原理:BLD通过分解式NAS为每个变换器层(block)构建一个子块库,包含多种注意力(attention)和前馈网络(FFN)变体。每个子块独立训练以模仿其对应的父模型块,采用归一化均方误差(MSE)损失:

L = MSE ( a p , a c ) MSE ( a p , 0 ) \mathcal{L} = \frac{\text{MSE}(a_p, a_c)}{\text{MSE}(a_p, 0)} L=MSE(ap,0)MSE(ap,ac)

其中,( a p a_p ap) 和 ( a c a_c ac) 分别表示父块和子块的输出。这种本地化训练隔离了块间依赖,允许并行训练,显著降低计算成本。

创新点

  • 解耦BLD:相比耦合BLD(训练所有注意力-FFN组合),解耦BLD仅训练注意力或FFN变体与冻结父子块的组合。例如,对于 ( m m m) 个注意力变体、( n n n) 个FFN变体和 ( l l l) 个层,耦合BLD需训练 ( m ⋅ n ⋅ l m \cdot n \cdot l mnl) 个变体,而解耦BLD仅需 ( ( m + n ) ⋅ l (m + n) \cdot l (m+n)l) 个,效率提升显著。
  • 初始化优化:通过基于激活的通道贡献(Channel Contribution)方法初始化FFN子块,优先修剪低贡献通道;注意力子块通过均值池化或投影矩阵乘积初始化,加速蒸馏收敛。

优势:BLD仅需约1B token的小数据集即可完成训练,且无需父模型的原始训练数据,适用于“开放权重、封闭数据”场景。

2. 混合整数规划(MIP)架构搜索

原理:MIP在BLD生成的子块库中搜索最优架构,满足特定硬件约束(如内存、延迟、吞吐量)。Puzzle首先测量每个子块在目标硬件上的资源需求(如预填充和生成阶段的延迟),然后通过MIP优化算法选择子块组合,最大化模型性能。

创新点

  • 硬件感知优化:直接测量目标硬件(如H100 GPU)上的运行时和内存需求,考虑批大小、序列长度和量化水平(如FP8),克服了FLOPs等理论指标的局限性。
  • 非均匀架构:Puzzle生成的模型(如Nemotron-51B)采用非均匀架构,部分层减少或跳过注意力/FFN操作,优化资源分配,提升硬件利用率。

优势:MIP阶段无需为每个候选架构进行全模型蒸馏,仅在最终架构确定后进行GKD,显著降低搜索成本。

3. 全局知识蒸馏(GKD)

原理:由于BLD独立训练子块,可能导致块间不兼容,GKD通过全局蒸馏微调整个模型,修复误差传播问题。GKD使用父模型指导子模型,确保性能接近原始模型。

优势:GKD仅在最终架构上执行,结合BLD的低成本特性,使整个框架高效可扩展。

搜索空间设计

Puzzle定义了丰富的搜索空间,涵盖每个变换器层的注意力子块(( A i \mathcal{A}_i Ai))和FFN子块(( F i \mathcal{F}_i Fi))变体:

  • 注意力子块:包括分组查询注意力(GQA,变体为8、4、2、1个键值头)、线性层或空操作(no-op)。
  • FFN子块:包括完整中间维度、约87%、75%、50%、25%、20%、10%的缩减维度、线性层或空操作。

以Llama-3.1-70B(80层)为例,每层有6种注意力变体和9种FFN变体,共54种配置,总搜索空间达 ( 5 4 80 ≈ 1 0 118 54^{80} \approx 10^{118} 548010118)。这种多样性允许Puzzle灵活平衡计算成本和表示能力。

实证结果与洞见

  • 效率突破:Nemotron-51B在H100 GPU上实现2.17倍吞吐量提升,内存效率显著提高,适合大批量推理场景。
  • 性能保留:在RULER基准测试中,Nemotron-51B保留了98.4%的父模型性能,尤其在长上下文任务中表现优异。
  • 硬件效率分析:Puzzle揭示了批大小对生成阶段硬件利用率的关键影响,强调实际测量优于理论指标。

未来方向

Puzzle框架为LLM推理优化开辟了新路径,未来可探索:

  • 更复杂的搜索算法(如强化学习或进化算法)。
  • 架构模式与特定任务能力的关系。
  • 动态架构适配以应对分布变化或新任务。

结论

Puzzle框架通过分解式NAS、BLD和MIP,实现了LLM推理效率的突破性提升。其硬件感知优化和低成本特性使其在商业部署中具有巨大潜力。Nemotron-51B的成功验证了非均匀架构在实际场景中的优势,为深度学习研究者提供了宝贵的参考。

块级本地蒸馏

以下是对块级本地蒸馏(BLD)部分的详细解析,重点回答你的问题,包括损失函数分母的含义、解耦BLD的原理与效率、潜在的选择空间损失,以及基于激活的通道贡献(Channel Contribution)方法的细节。内容将深入技术细节,同时保持清晰易懂,面向深度学习研究者。


1. 损失函数中的分母 ( MSE ( a p , 0 ) \text{MSE}(a_p, 0) MSE(ap,0)) 的含义

公式背景
Puzzle框架在BLD阶段通过归一化均方误差(MSE)损失训练每个子块(child block)以模仿对应的父块(parent block)。损失函数定义为:

L = MSE ( a p , a c ) MSE ( a p , 0 ) \mathcal{L} = \frac{\text{MSE}(a_p, a_c)}{\text{MSE}(a_p, 0)} L=MSE(ap,0)MSE(ap,ac)

其中:

  • ( a p a_p ap):父块的输出,表示父模型在对应变换器层的激活值。
  • ( a c a_c ac):子块的输出,表示当前训练的候选子块的激活值。
  • ( MSE ( a p , a c ) = 1 n ∑ i = 1 n ( a p ( i ) − a c ( i ) ) 2 \text{MSE}(a_p, a_c) = \frac{1}{n} \sum_{i=1}^n (a_p^{(i)} - a_c^{(i)})^2 MSE(ap,ac)=n1i=1n(ap(i)ac(i))2):父块输出与子块输出之间的均方误差,衡量子块模仿父块的准确性。
  • ( MSE ( a p , 0 ) = 1 n ∑ i = 1 n ( a p ( i ) − 0 ) 2 = 1 n ∑ i = 1 n ( a p ( i ) ) 2 \text{MSE}(a_p, 0) = \frac{1}{n} \sum_{i=1}^n (a_p^{(i)} - 0)^2 = \frac{1}{n} \sum_{i=1}^n (a_p^{(i)})^2 MSE(ap,0)=n1i=1n(ap(i)0)2=n1i=1n(ap(i))2):父块输出与零向量之间的均方误差,等价于父块输出的二范数平方。

分母 ( MSE ( a p , 0 ) \text{MSE}(a_p, 0) MSE(ap,0)) 的含义

  • 分母 ( MSE ( a p , 0 ) \text{MSE}(a_p, 0) MSE(ap,0)) 是一个归一化因子,代表父块输出 ( a p a_p ap) 的能量(或信号强度)。它计算的是父块输出的平方和,反映了父块输出相对于“零输出”的偏差。
  • 通过除以 ( MSE ( a p , 0 ) \text{MSE}(a_p, 0) MSE(ap,0)),损失函数将分子 ( MSE ( a p , a c ) \text{MSE}(a_p, a_c) MSE(ap,ac)) 归一化为相对误差。这种归一化有以下作用:
    1. 尺度无关性:不同层的父块输出可能有不同的量级(例如,由于激活值的分布或层的深度差异)。归一化消除了这种尺度差异,使损失函数在所有层上具有可比性。
    2. 稳定训练:归一化后的损失值通常在 [0, 1] 范围内(因为 ( MSE ( a p , a c ) ≤ MSE ( a p , 0 ) \text{MSE}(a_p, a_c) \leq \text{MSE}(a_p, 0) MSE(ap,ac)MSE(ap,0)) 在大多数情况下成立),这有助于稳定梯度更新,允许使用更高的学习率。
    3. 物理意义:分母表示“如果子块输出全为零时的误差”,因此损失函数衡量的是子块输出相对于“最差情况”(零输出)的改进程度。

为何选择零向量

  • 零向量作为基准是因为它代表了子块完全失效(无输出)的情况。( MSE ( a p , 0 ) \text{MSE}(a_p, 0) MSE(ap,0)) 提供了一个自然的参考点,用于量化子块输出的质量。相比其他可能的基准(如随机输出或平均输出),零向量更简单且计算成本低,同时与“跳过子块”(no-op操作)的场景一致。

实际意义

  • 在实践中,( MSE ( a p , 0 ) \text{MSE}(a_p, 0) MSE(ap,0)) 通常是一个较大的值,因为父块输出 ( a p a_p ap) 包含有意义的特征信息。分子 ( MSE ( a p , a c ) \text{MSE}(a_p, a_c) MSE(ap,ac)) 越小,说明子块越好地模仿了父块,损失值 ( L \mathcal{L} L) 接近于 0。反之,如果子块输出偏离父块,( L \mathcal{L} L) 会增大,但由于归一化,损失值不会因父块输出的绝对量级而失控。

2. 解耦BLD的原理与效率

背景
BLD的目标是为每个变换器层构建一个子块库,包含多种注意力(attention)和前馈网络(FFN)变体的组合。每个子块通过蒸馏训练以模仿对应的父块。Puzzle提出了两种BLD策略:

  • 耦合BLD:为每层训练所有可能的注意力-FFN组合。
  • 解耦BLD:分别训练注意力变体(与冻结的父FFN组合)和FFN变体(与冻结的父注意力组合),然后在训练后组合成完整子块。

解耦BLD的原理

  • 在解耦BLD中,Puzzle将变换器层的子块分为两个子模块:注意力子块(( A i \mathcal{A}_i Ai))和FFN子块(( F i \mathcal{F}_i Fi))。对于第 (i) 层:
    1. 训练注意力变体:固定FFN子块为父模型的FFN(( f parent f_{\text{parent}} fparent)),训练所有注意力变体 ( { a j } j = 1 m \{a_j\}_{j=1}^m {aj}j=1m),使其与父块 ( [ a parent , f parent ] [a_{\text{parent}}, f_{\text{parent}}] [aparent,fparent]) 的输出匹配。训练的子块形式为 ( [ a j , f parent ] [a_j, f_{\text{parent}}] [aj,fparent])。
    2. 训练FFN变体:固定注意力子块为父模型的注意力(( a parent a_{\text{parent}} aparent)),训练所有FFN变体 ( { f k } k = 1 n \{f_k\}_{k=1}^n {fk}k=1n),使其与父块 ( [ a parent , f parent ] [a_{\text{parent}}, f_{\text{parent}}] [aparent,fparent]) 的输出匹配。训练的子块形式为 ( [ a parent , f k ] [a_{\text{parent}}, f_k] [aparent,fk])。
    3. 组合子块:训练完成后,将训练好的注意力变体 ( a j a_j aj) 和FFN变体 ( f k f_k fk) 组合成完整子块 ( [ a j , f k ] [a_j, f_k] [aj,fk]),无需进一步训练。
  • 这种解耦假设注意力子块和FFN子块的贡献在一定程度上是独立的,允许分别优化它们,而无需直接训练所有组合。

计算效率

  • 耦合BLD:需要训练每层的所有注意力-FFN组合。对于 ( m m m) 个注意力变体、( n n n) 个FFN变体和 ( l l l) 个变换器层,需训练 ( m ⋅ n ⋅ l m \cdot n \cdot l mnl) 个子块。例如,若 ( m = 6 m = 6 m=6)(注意力变体)、( n = 9 n = 9 n=9)(FFN变体)、( l = 80 l = 80 l=80)(如Llama-3.1-70B),则需训练 ( 6 ⋅ 9 ⋅ 80 = 4320 6 \cdot 9 \cdot 80 = 4320 6980=4320) 个子块。
  • 解耦BLD:仅训练每层的 ( m m m) 个注意力变体和 ( n n n) 个FFN变体,总计 ( ( m + n ) ⋅ l (m + n) \cdot l (m+n)l) 个子块。以上例,需训练 ( ( 6 + 9 ) ⋅ 80 = 1200 (6 + 9) \cdot 80 = 1200 (6+9)80=1200) 个子块,计算量减少约3.6倍。
  • 效率提升:解耦BLD的训练量从 ( O ( m ⋅ n ⋅ l O(m \cdot n \cdot l O(mnl)) 降至 ( O ( ( m + n ) ⋅ l ) O((m + n) \cdot l) O((m+n)l)),显著降低了构建子块库的成本,尤其当 ( m m m) 和 ( n n n) 较大时(如 ( m = n = 20 m = n = 20 m=n=20) 时,耦合需训练32000个子块,解耦仅需3200个)。

是否丢失选择空间

  • 潜在损失:解耦BLD假设注意力子块和FFN子块可以独立训练并组合,而不考虑它们在训练时的交互效应。这种假设可能导致组合后的子块 ( [ a j , f k ] [a_j, f_k] [aj,fk]) 并非完全等价于直接训练的耦合子块,因为:
    1. 上下文依赖:注意力子块的输出会影响FFN子块的输入,解耦训练无法捕捉这种动态交互,可能导致组合子块的性能略低于耦合训练的子块。
    2. 误差累积:解耦训练的子块以父块的输出为目标,而非其他子块的输出,可能在组合后引入误差,尤其在深层模型中。
  • 实际影响
    • 论文指出,解耦BLD生成的子块库在实践中表现良好,BLD阶段已能恢复父模型的大部分性能(见表14)。这表明注意力与FFN的交互效应在蒸馏任务中可能不是主导因素。
    • Puzzle通过后续的全局知识蒸馏(GKD)阶段进一步微调整个模型,弥补了解耦带来的潜在不兼容性(如块间误差传播),确保最终模型性能接近父模型。
    • 论文还提到了一种折中方案(见Section 8.1.1),结合耦合和解耦BLD,针对关键层或组合进行耦合训练,以平衡效率和性能。
  • 权衡:解耦BLD牺牲了一部分选择空间的精确性(即未直接训练某些组合的交互),但通过大幅降低计算成本,允许探索更大的搜索空间(例如更多变体或层)。这种权衡在资源受限的场景下尤为重要,且GKD阶段的校正作用进一步减轻了潜在损失。

3. 基于激活的通道贡献(Channel Contribution)方法

背景
在BLD阶段,Puzzle需要初始化FFN子块的权重,特别是当FFN的中间维度被缩减(例如从100%缩减到87%、75%等)。为了加速蒸馏收敛,Puzzle提出了基于激活的通道贡献(Channel Contribution)方法,通过分析FFN中间通道的贡献来选择修剪目标。

方法原理

  • FFN结构:FFN子块通常包含上投影(up projection)、激活函数(如GeLU)和下投影(down projection)。设隐维度为 ( H H H),FFN中间维度为 ( I I I),下投影矩阵为 ( W down ∈ R I × H W^{\text{down}} \in \mathbb{R}^{I \times H} WdownRI×H)。对于输入 ( X ∈ R I X \in \mathbb{R}^I XRI)(FFN中间激活),FFN输出为:

Y = ( W down ) ⊤ X = ∑ k = 1 I X k W k , : down Y = (W^{\text{down}})^{\top} X = \sum_{k=1}^I X_k W_{k,:}^{\text{down}} Y=(Wdown)X=k=1IXkWk,:down

其中 ( Y ∈ R H Y \in \mathbb{R}^H YRH) 是FFN输出,( X k X_k Xk) 是中间激活的第 ( k k k) 个通道,( W k , : down W_{k,:}^{\text{down}} Wk,:down) 是下投影矩阵的第 ( k k k) 行。

  • 通道贡献定义:对于每个中间通道 ( k k k),其对FFN输出的贡献定义为移除该通道后的输出变化:

C k ( X ) = ∥ ( ∑ j = 1 I X j W j , : down ) − ( ∑ j ≠ k X j W j , : down ) ∥ 2 = ∣ X k ∣ ⋅ ∥ W k , : down ∥ 2 C_k(X) = \left\| \left( \sum_{j=1}^I X_j W_{j,:}^{\text{down}} \right) - \left( \sum_{j \neq k} X_j W_{j,:}^{\text{down}} \right) \right\|_2 = \left| X_k \right| \cdot \left\| W_{k,:}^{\text{down}} \right\|_2 Ck(X)= (j=1IXjWj,:down) j=kXjWj,:down 2=Xk Wk,:down 2

其中:

  • ( ∣ X k ∣ \left| X_k \right| Xk):通道 ( k k k) 的激活绝对值,反映该通道的激活强度。

  • ( ∥ W k , : down ∥ 2 \left\| W_{k,:}^{\text{down}} \right\|_2 Wk,:down 2):下投影矩阵第 ( k k k) 行的二范数,反映该通道的权重重要性。

  • ( C k ( X C_k(X Ck(X)):通道 ( k k k) 的贡献,结合了激活强度和权重重要性。

  • 计算过程

    1. 在校准数据集(calibration dataset)上运行前向传播,收集FFN中间激活 ( X X X)。
    2. 对每个通道 ( k k k),计算其贡献 ( C k ( X ) C_k(X) Ck(X)) 在数据集上的平均值,得到每个通道的平均贡献。
    3. 根据贡献从小到大排序通道,优先修剪贡献最低的通道,以初始化缩减维度的FFN子块。

方法优势

  • 数据驱动:通过校准数据集的激活值,方法捕捉了通道在实际推理中的重要性,而非仅依赖权重大小。
  • 高效性:贡献计算仅需一次前向传播,计算成本低,适合大规模模型。
  • 针对性:结合激活强度 ( ∣ X k ∣ \left| X_k \right| Xk) 和权重重要性 ( ∥ W k , : down ∥ 2 \left\| W_{k,:}^{\text{down}} \right\|_2 Wk,:down 2),确保修剪保留对输出影响最大的通道。

与传统修剪的区别

  • 传统修剪方法(如基于权重大小的L1范数修剪)仅考虑权重矩阵,忽略了输入激活的动态分布,可能错误修剪对输出贡献大的通道。
  • Channel Contribution方法结合了激活和权重,类似于Wanda等基于激活的修剪技术(参考文献[40]),但专注于FFN中间通道,适用于Puzzle的蒸馏初始化场景。

实际应用

  • 在初始化缩减维度FFN时(如从100%降到50%),Puzzle根据通道贡献排序,移除低贡献通道,保留高贡献通道的权重。
  • 这种初始化使子块更接近父块的输出分布,减少蒸馏训练的初始误差,加速收敛。

4. 总结与补充说明

  • 损失函数分母:( MSE ( a p , 0 ) \text{MSE}(a_p, 0) MSE(ap,0)) 作为归一化因子,确保损失尺度无关且训练稳定,零向量作为基准反映了“最差输出”的场景。
  • 解耦BLD
    • 效率:通过将训练量从 ( m ⋅ n ⋅ l m \cdot n \cdot l mnl) 降至 ( ( m + n ) ⋅ l (m + n) \cdot l (m+n)l),显著降低成本。
    • 选择空间:可能丢失注意力-FFN交互的精确性,但通过GKD校正和折中方案(如部分耦合BLD)缓解影响,实践中性能接近耦合BLD。
    • 适用性:解耦BLD特别适合大规模搜索空间,允许探索更多变体。
  • Channel Contribution
    • 是一种数据驱动的初始化方法,通过激活和权重的结合评估通道重要性,优先修剪低贡献通道。
    • 相比传统修剪方法,更准确地保留对FFN输出贡献大的通道,加速蒸馏收敛。

进一步思考

  • 解耦BLD的假设(注意力与FFN独立性)可能在某些任务或模型中不完全成立,未来可通过自适应选择耦合/解耦训练的层来优化。
  • Channel Contribution方法依赖校准数据集的质量,数据集的代表性可能影响修剪效果,需进一步研究其鲁棒性。

Decomposed NAS Search Algorithm for LLMs

在《PUZZLE: DISTILLATION-BASED NAS FOR INFERENCE-OPTIMIZED LLMS》论文中,Decomposed NAS Search Algorithm for LLMs(分解式神经架构搜索算法)是Puzzle框架的核心组件之一,用于在大规模语言模型(LLM)的架构空间中高效搜索推理优化的模型架构。本节将详细介绍该算法的原理、实现步骤、数学公式以及其在LLM优化中的独特贡献。内容面向深度学习研究者,深入技术细节,同时保持逻辑清晰。


1. 概述与背景

目标:Puzzle框架旨在通过神经架构搜索(NAS)优化LLM的推理效率(如吞吐量、延迟、内存占用),同时最大限度保留模型性能。传统NAS方法(如全模型搜索)在LLM规模(数十亿参数)下计算成本极高,且难以针对特定硬件(如NVIDIA H100 GPU)和推理场景(如FP8量化)进行优化。Puzzle提出了一种分解式NAS(Decomposed NAS),通过将搜索过程分解为块级本地蒸馏(BLD)、混合整数规划(MIP)架构搜索和全局知识蒸馏(GKD)三个阶段,显著降低搜索成本并实现硬件感知优化。

核心思想

  • 将LLM的变换器层(block)视为独立模块,分别优化每个层的注意力(attention)和前馈网络(FFN)子块。
  • 使用BLD构建子块库,MIP搜索最优子块组合,GKD微调最终模型。
  • 针对目标硬件的实际运行时和内存需求优化,而非仅依赖理论指标(如FLOPs)。

本节重点:分解式NAS的搜索算法(主要是MIP阶段),其数学公式、约束条件和实现细节。


2. 分解式NAS搜索算法的原理

分解式NAS搜索算法的核心是混合整数规划(MIP),它在BLD阶段生成的子块库中选择最优的子块组合,构建一个推理优化的LLM架构。以下是算法的整体流程和原理:

2.1 算法流程

  1. 输入

    • 子块库:BLD阶段为每个变换器层 ( i ∈ { 1 , … , l } i \in \{1, \dots, l\} i{1,,l}) 生成的子块库,包含注意力子块集合 ( A i = { a i , 1 , … , a i , m } \mathcal{A}_i = \{a_{i,1}, \dots, a_{i,m}\} Ai={ai,1,,ai,m}) 和FFN子块集合 ( F i = { f i , 1 , … , f i , n } \mathcal{F}_i = \{f_{i,1}, \dots, f_{i,n}\} Fi={fi,1,,fi,n})。每层可选择 ( m ⋅ n m \cdot n mn) 种子块组合(例如,Llama-3.1-70B有80层,( m = 6 m=6 m=6),( n = 9 n=9 n=9),每层54种组合)。
    • 硬件约束:目标硬件(如H100 GPU)的资源限制,包括内存预算 ( M max M_{\text{max}} Mmax)、延迟目标 ( L max L_{\text{max}} Lmax) 或吞吐量目标。
    • 性能估计:每个子块的性能指标(通过BLD蒸馏损失估计)和硬件资源需求(通过实际测量获得,例如预填充和生成阶段的延迟)。
  2. 搜索目标

    • 最大化模型性能(通常以父模型的性能为基准,基于BLD阶段的蒸馏损失)。
    • 满足硬件约束(如内存占用、推理延迟)或优化硬件效率(如吞吐量)。
  3. 输出

    • 每层的最优子块组合 ( { ( a i , j , f i , k ) } i = 1 l \{(a_{i,j}, f_{i,k})\}_{i=1}^l {(ai,j,fi,k)}i=1l),构成一个完整的LLM架构(如Nemotron-51B)。
    • 该架构在目标硬件上实现高吞吐量、低延迟,同时保留接近父模型的性能。

2.2 分解式NAS的关键创新

  • 块级分解:将NAS问题分解为每层的子块选择,显著缩小搜索空间。传统NAS搜索整个模型架构,空间复杂度为 ( O ( K N ) O(K^N) O(KN))(( K K K)为每层选项数,( N N N)为参数规模),而分解式NAS将问题简化为 ( O ( l ⋅ m ⋅ n ) O(l \cdot m \cdot n) O(lmn)),其中 ( l l l) 是层数(例如80)。
  • 硬件感知优化:直接测量子块在目标硬件上的运行时(runtime)和内存需求,考虑批大小、序列长度和量化水平(如FP8),优于基于FLOPs的理论估计。
  • 非均匀架构:允许每层选择不同的子块(如跳过注意力、缩减FFN维度),生成非均匀架构,优化资源分配。
  • 高效MIP:使用MIP求解器在合理时间内找到全局最优解,避免了强化学习或进化算法的高昂成本。

3. 数学公式与MIP模型

MIP是分解式NAS搜索算法的核心工具,用于在子块库中选择最优组合。以下是MIP模型的详细数学公式和约束条件。

3.1 问题定义

设:

  • ( l l l):变换器层数(如Llama-3.1-70B的80层)。
  • ( A i = { a i , 1 , … , a i , m } \mathcal{A}_i = \{a_{i,1}, \dots, a_{i,m}\} Ai={ai,1,,ai,m}):第 ( i i i) 层的注意力子块集合,包含 ( m m m) 个变体(如GQA变体、线性层、no-op)。
  • ( F i = { f i , 1 , … , f i , n } \mathcal{F}_i = \{f_{i,1}, \dots, f_{i,n}\} Fi={fi,1,,fi,n}):第 ( i i i) 层的FFN子块集合,包含 ( n n n) 个变体(如不同中间维度、线性层、no-op)。
  • 每层选择一个子块组合 ( ( a i , j , f i , k ) (a_{i,j}, f_{i,k}) (ai,j,fi,k)),其中 ( j ∈ { 1 , … , m } j \in \{1, \dots, m\} j{1,,m}),( k ∈ { 1 , … , n } k \in \{1, \dots, n\} k{1,,n})。

目标

  • 最大化模型性能(基于BLD阶段的蒸馏损失)。
  • 满足硬件约束(如内存、延迟)或优化目标(如吞吐量)。

3.2 决策变量

为每层 ( i i i) 的子块组合定义二进制决策变量:
x i , j , k ∈ { 0 , 1 } , ∀ i ∈ { 1 , … , l } , j ∈ { 1 , … , m } , k ∈ { 1 , … , n } x_{i,j,k} \in \{0, 1\}, \quad \forall i \in \{1, \dots, l\}, j \in \{1, \dots, m\}, k \in \{1, \dots, n\} xi,j,k{0,1},i{1,,l},j{1,,m},k{1,,n}
其中:

  • ( x i , j , k = 1 x_{i,j,k} = 1 xi,j,k=1) 表示第 ( i i i) 层选择注意力子块 ( a i , j a_{i,j} ai,j) 和FFN子块 ( f i , k f_{i,k} fi,k)。
  • ( x i , j , k = 0 x_{i,j,k} = 0 xi,j,k=0) 表示未选择该组合。

约束:每层只能选择一个子块组合:
∑ j = 1 m ∑ k = 1 n x i , j , k = 1 , ∀ i ∈ { 1 , … , l } \sum_{j=1}^m \sum_{k=1}^n x_{i,j,k} = 1, \quad \forall i \in \{1, \dots, l\} j=1mk=1nxi,j,k=1,i{1,,l}

3.3 目标函数

目标是最大化模型性能,通常通过最小化BLD阶段的累积蒸馏损失。设每个子块组合 ( ( a i , j , f i , k ) (a_{i,j}, f_{i,k}) (ai,j,fi,k)) 的蒸馏损失为 ( L i , j , k \mathcal{L}_{i,j,k} Li,j,k),则目标函数为:

minimize ∑ i = 1 l ∑ j = 1 m ∑ k = 1 n L i , j , k ⋅ x i , j , k \text{minimize} \quad \sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n \mathcal{L}_{i,j,k} \cdot x_{i,j,k} minimizei=1lj=1mk=1nLi,j,kxi,j,k

说明

  • ( L i , j , k \mathcal{L}_{i,j,k} Li,j,k) 是BLD阶段计算的归一化MSE损失,反映子块组合模仿父块的准确性(见上一节的公式 ( L = MSE ( a p , a c ) MSE ( a p , 0 ) \mathcal{L} = \frac{\text{MSE}(a_p, a_c)}{\text{MSE}(a_p, 0)} L=MSE(ap,0)MSE(ap,ac)))。
  • 最小化累积损失等价于最大化模型性能,因为较低的蒸馏损失意味着子块更接近父块的输出。

替代目标

  • 在某些场景下,Puzzle可能直接优化硬件效率(如最大化吞吐量)。例如,设每层子块组合的吞吐量为 ( T i , j , k T_{i,j,k} Ti,j,k),目标函数可改为:
    maximize ∑ i = 1 l ∑ j = 1 m ∑ k = 1 n T i , j , k ⋅ x i , j , k \text{maximize} \quad \sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n T_{i,j,k} \cdot x_{i,j,k} maximizei=1lj=1mk=1nTi,j,kxi,j,k
  • 实际中,Puzzle通常结合性能和效率,通过加权目标函数或约束条件平衡两者。

3.4 硬件约束

MIP模型通过以下约束确保架构满足硬件限制:

  1. 内存约束
    设子块组合 ( ( a i , j , f i , k ) (a_{i,j}, f_{i,k}) (ai,j,fi,k)) 的内存占用为 ( M i , j , k M_{i,j,k} Mi,j,k),总内存预算为 ( M max M_{\text{max}} Mmax),则:
    ∑ i = 1 l ∑ j = 1 m ∑ k = 1 n M i , j , k ⋅ x i , j , k ≤ M max \sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n M_{i,j,k} \cdot x_{i,j,k} \leq M_{\text{max}} i=1lj=1mk=1nMi,j,kxi,j,kMmax

    • ( M i , j , k M_{i,j,k} Mi,j,k) 通过在目标硬件(如H100 GPU)上实际测量获得,考虑权重、激活、KV缓存等。
  2. 延迟约束
    设子块组合 ( ( a i , j , f i , k ) (a_{i,j}, f_{i,k}) (ai,j,fi,k)) 在预填充阶段(prefill)和生成阶段(generation)的延迟分别为 ( L i , j , k prefill L_{i,j,k}^{\text{prefill}} Li,j,kprefill) 和 ( L i , j , k gen L_{i,j,k}^{\text{gen}} Li,j,kgen),总延迟预算为 ( L max L_{\text{max}} Lmax),则:
    ∑ i = 1 l ∑ j = 1 m ∑ k = 1 n L i , j , k prefill ⋅ x i , j , k ≤ L max prefill \sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n L_{i,j,k}^{\text{prefill}} \cdot x_{i,j,k} \leq L_{\text{max}}^{\text{prefill}} i=1lj=1mk=1nLi,j,kprefillxi,j,kLmaxprefill
    ∑ i = 1 l ∑ j = 1 m ∑ k = 1 n L i , j , k gen ⋅ x i , j , k ≤ L max gen \sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n L_{i,j,k}^{\text{gen}} \cdot x_{i,j,k} \leq L_{\text{max}}^{\text{gen}} i=1lj=1mk=1nLi,j,kgenxi,j,kLmaxgen

    • 延迟测量考虑批大小、序列长度和量化水平(如FP8),反映真实推理场景。
  3. 吞吐量优化(可选):
    如果目标是最大化吞吐量,吞吐量 ( T T T) 可通过延迟的倒数近似:
    T ∝ 1 ∑ i = 1 l ∑ j = 1 m ∑ k = 1 n L i , j , k ⋅ x i , j , k T \propto \frac{1}{\sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n L_{i,j,k} \cdot x_{i,j,k}} Ti=1lj=1mk=1nLi,j,kxi,j,k1
    由于MIP通常处理线性目标,Puzzle可能将吞吐量目标线性化为子块的加权贡献。

3.5 完整MIP模型

综合以上,MIP模型可形式化为:

minimize ∑ i = 1 l ∑ j = 1 m ∑ k = 1 n L i , j , k ⋅ x i , j , k \text{minimize} \quad \sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n \mathcal{L}_{i,j,k} \cdot x_{i,j,k} minimizei=1lj=1mk=1nLi,j,kxi,j,k

主体约束:
∑ j = 1 m ∑ k = 1 n x i , j , k = 1 , ∀ i ∈ { 1 , … , l } \sum_{j=1}^m \sum_{k=1}^n x_{i,j,k} = 1, \quad \forall i \in \{1, \dots, l\} j=1mk=1nxi,j,k=1,i{1,,l}
∑ i = 1 l ∑ j = 1 m ∑ k = 1 n M i , j , k ⋅ x i , j , k ≤ M max \sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n M_{i,j,k} \cdot x_{i,j,k} \leq M_{\text{max}} i=1lj=1mk=1nMi,j,kxi,j,kMmax
∑ i = 1 l ∑ j = 1 m ∑ k = 1 n L i , j , k prefill ⋅ x i , j , k ≤ L max prefill \sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n L_{i,j,k}^{\text{prefill}} \cdot x_{i,j,k} \leq L_{\text{max}}^{\text{prefill}} i=1lj=1mk=1nLi,j,kprefillxi,j,kLmaxprefill
∑ i = 1 l ∑ j = 1 m ∑ k = 1 n L i , j , k gen ⋅ x i , j , k ≤ L max gen \sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n L_{i,j,k}^{\text{gen}} \cdot x_{i,j,k} \leq L_{\text{max}}^{\text{gen}} i=1lj=1mk=1nLi,j,kgenxi,j,kLmaxgen
x i , j , k ∈ { 0 , 1 } , ∀ i , j , k x_{i,j,k} \in \{0, 1\}, \quad \forall i, j, k xi,j,k{0,1},i,j,k

求解

  • MIP模型通过开源求解器(如Gurobi、CPLEX)或定制优化算法求解。
  • 由于搜索空间仍较大(例如,80层每层54种组合,空间为 ( 5 4 80 ≈ 1 0 118 54^{80} \approx 10^{118} 548010118)),Puzzle利用BLD的模块化特性,将问题分解为每层的独立选择,结合MIP的约束剪枝,显著加速求解。

4. 实现细节

4.1 子块库的资源测量

  • 运行时测量
    • 每个子块组合 ( ( a i , j , f i , k ) (a_{i,j}, f_{i,k}) (ai,j,fi,k)) 在目标硬件上运行校准数据集,测量预填充和生成阶段的延迟(( L i , j , k prefill L_{i,j,k}^{\text{prefill}} Li,j,kprefill), ( L i , j , k gen L_{i,j,k}^{\text{gen}} Li,j,kgen))。
    • 测量考虑实际推理引擎(如TensorKT-LLM)、批大小、序列长度和量化水平(如FP8)。
  • 内存测量
    • 计算子块的权重内存(基于参数量)、激活内存(基于批大小和序列长度)和KV缓存内存。
    • 例如,跳过注意力(no-op)的子块显著降低KV缓存需求。

4.2 性能估计

  • 蒸馏损失:BLD阶段为每个子块组合计算归一化MSE损失 ( L i , j , k \mathcal{L}_{i,j,k} Li,j,k),作为性能的代理指标。
  • 校准数据集:使用约1B token的小数据集(如Wikipedia、Books)计算损失,无需父模型的原始训练数据。

4.3 非均匀架构支持

  • Puzzle允许每层选择不同的子块,形成非均匀架构。例如:
    • 某些层跳过注意力(no-op),减少KV缓存和计算。
    • 某些层缩减FFN中间维度(如50%或25%),降低内存和延迟。
  • 非均匀架构需要推理引擎支持(如TensorKT-LLM的变头数注意力支持)。

4.4 优化加速

  • 约束剪枝:MIP求解器利用内存和延迟约束,快速排除不可行组合。
  • 并行化:子块的资源测量和性能估计可并行执行,缩短搜索时间。
  • 增量搜索:从较小模型开始(如Llama-3.1-8B),逐步扩展到大模型(如70B),复用子块库。

5. 算法优势与贡献

  1. 高效性

    • 分解式NAS将搜索空间从指数级降至线性级,BLD和MIP结合仅需不到50B token,远低于原始模型的15T token。
    • MIP求解器在合理时间内(数小时)找到全局最优解,优于强化学习或进化算法。
  2. 硬件感知

    • 直接优化真实硬件指标(如H100 GPU的运行时),考虑批大小、序列长度和量化,生成的架构(如Nemotron-51B)实现2.17倍吞吐量提升。
  3. 灵活性

    • 支持非均匀架构,适应多样化的硬件约束和推理场景。
    • 子块库可复用于不同任务或硬件,增强扩展性。
  4. 性能保留

    • 通过BLD和GKD,生成的模型(如Nemotron-51B)保留98.4%的父模型性能(RULER基准)。

6. 数学与实现的进一步说明

6.1 搜索空间规模

以Llama-3.1-70B为例:

  • 80层,每层6种注意力变体(( m = 6 m=6 m=6))和9种FFN变体(( n = 9 n=9 n=9))。
  • 每层组合数:( m ⋅ n = 54 m \cdot n = 54 mn=54)。
  • 总搜索空间:( 5 4 80 ≈ 1 0 118 54^{80} \approx 10^{118} 548010118)。
  • 分解式NAS通过MIP约束和BLD模块化,将实际搜索复杂度降至可处理范围(每层独立选择,结合线性约束)。

6.2 权衡性能与效率

  • 性能优先:最小化 ( ∑ L i , j , k ⋅ x i , j , k \sum \mathcal{L}_{i,j,k} \cdot x_{i,j,k} Li,j,kxi,j,k),选择损失最低的子块。
  • 效率优先:在损失约束下最大化吞吐量,例如:
    maximize T , s.t. ∑ L i , j , k ⋅ x i , j , k ≤ L max \text{maximize} \quad T, \quad \text{s.t.} \quad \sum \mathcal{L}_{i,j,k} \cdot x_{i,j,k} \leq \mathcal{L}_{\text{max}} maximizeT,s.t.Li,j,kxi,j,kLmax
  • 实际中,Puzzle可能使用多目标优化(如加权和)平衡两者。

6.3 实际案例:Nemotron-51B

  • 输入模型:Llama-3.1-70B-Instruct。
  • 搜索结果:Nemotron-51B,参数量缩减至51B,非均匀架构(部分层跳过注意力或缩减FFN)。
  • 性能:98.4%父模型性能(RULER基准)。
  • 效率:在H100 GPU上,FP8量化下吞吐量提升2.17倍,内存效率显著提高。

7. 未来方向

  • 动态搜索:结合推理时的动态批大小和序列长度,实时调整架构。
  • 多目标优化:引入Pareto前沿分析,生成多种性能-效率权衡的架构。
  • 扩展性:将分解式NAS应用于其他模型(如视觉变换器)或硬件(如TPU)。
  • 强化学习辅助:结合MIP和强化学习,进一步加速搜索。

8. 总结

分解式NAS搜索算法通过BLD、MIP和GKD三个阶段,高效地在LLM架构空间中搜索推理优化的模型。MIP模型以二进制决策变量为核心,通过最小化蒸馏损失、满足内存和延迟约束,生成如Nemotron-51B的高效非均匀架构。其硬件感知优化、模块化设计和低成本特性使其在LLM推理优化领域具有突破性意义。数学公式清晰定义了性能与效率的优化目标,实际测量确保了硬件适配性,为未来NAS研究提供了宝贵参考。

通道贡献详解

有问题:涉及到深度学习中“通道”(channel)这一术语的具体含义,以及在Puzzle框架中基于激活的通道贡献(Channel Contribution)方法中“通道”的定义和来源。以下我会详细解析“通道”在FFN(前馈网络)中的含义,为什么用“通道”这个术语,以及它在公式中的具体表示,结合FFN结构和Puzzle框架的上下文,确保清晰易懂。


1. 什么是“通道”?

在深度学习中,“通道”(channel)通常用来描述张量(tensor)或向量中某个特定维度上的独立成分,最初来源于卷积神经网络(CNN)中的图像处理背景。在CNN中,输入图像的每个颜色通道(如RGB的红、绿、蓝)被视为一个“通道”,扩展到卷积层中,每张特征图(feature map)也被称为一个通道。随着深度学习的普及,“通道”这一术语被泛化到其他神经网络结构中,包括变换器(Transformer)的FFN层,用来描述某些维度的独立分量。

在Puzzle框架的FFN子块中,“通道”具体指的是FFN中间激活向量 ( X ∈ R I X \in \mathbb{R}^I XRI) 的每个标量分量(即向量 ( X X X) 的每个元素 ( X k X_k Xk),其中 ( k ∈ { 1 , … , I } k \in \{1, \dots, I\} k{1,,I}))。这些分量被称为“通道”,是因为它们类似于CNN中特征图的通道,每个分量独立地通过权重矩阵(下投影矩阵 ( W down W^{\text{down}} Wdown))贡献到输出。


2. FFN结构与“通道”的来源

为了理解“通道”在FFN中的定义,我们先回顾FFN的结构和计算流程,然后解释为什么中间激活 ( X X X) 的每个元素被称为“通道”。

2.1 FFN结构

FFN(前馈网络)是变换器层中的一个关键组件,通常由以下步骤组成:

  1. 上投影(Up Projection):将输入向量从隐维度 ( H H H) 映射到更大的中间维度 ( I I I)(通常 ( I ≈ 4 H I \approx 4H I4H))。
  2. 激活函数:对中间表示应用非线性激活(如GeLU)。
  3. 下投影(Down Projection):将中间表示从维度 ( I I I) 映射回隐维度 ( H H H)。

数学表示如下:

  • 输入:( Z ∈ R H Z \in \mathbb{R}^H ZRH)(变换器层的输入,例如注意力层的输出)。
  • 上投影矩阵:( W up ∈ R H × I W^{\text{up}} \in \mathbb{R}^{H \times I} WupRH×I),偏置:( b up ∈ R I b^{\text{up}} \in \mathbb{R}^I bupRI)。
  • 中间激活:( X = GeLU ( W up Z + b up ) ∈ R I X = \text{GeLU}(W^{\text{up}} Z + b^{\text{up}}) \in \mathbb{R}^I X=GeLU(WupZ+bup)RI)。
  • 下投影矩阵:( W down ∈ R I × H W^{\text{down}} \in \mathbb{R}^{I \times H} WdownRI×H),偏置:( b down ∈ R H b^{\text{down}} \in \mathbb{R}^H bdownRH)。
  • 输出:( Y = ( W down ) ⊤ X + b down ∈ R H Y = (W^{\text{down}})^{\top} X + b^{\text{down}} \in \mathbb{R}^H Y=(Wdown)X+bdownRH)。

展开下投影的计算:
Y = ( W down ) ⊤ X = ∑ k = 1 I X k W k , : down Y = (W^{\text{down}})^{\top} X = \sum_{k=1}^I X_k W_{k,:}^{\text{down}} Y=(Wdown)X=k=1IXkWk,:down
其中:

  • ( X ∈ R I X \in \mathbb{R}^I XRI) 是中间激活向量,( X k X_k Xk) 是其第 ( k k k) 个元素(标量)。
  • ( W k , : down ∈ R H W_{k,:}^{\text{down}} \in \mathbb{R}^H Wk,:downRH) 是下投影矩阵 ( W down W^{\text{down}} Wdown) 的第 ( k k k) 行,表示第 ( k k k) 个中间通道对应的权重向量。
  • ( Y ∈ R H Y \in \mathbb{R}^H YRH) 是FFN的输出。
2.2 为什么 ( X k X_k Xk) 被称为“通道”?

在FFN中,中间激活向量 ( X ∈ R I X \in \mathbb{R}^I XRI) 的每个元素 ( X k X_k Xk)(( k ∈ { 1 , … , I } k \in \{1, \dots, I\} k{1,,I}))被视为一个“通道”,原因如下:

  1. 独立贡献

    • 每个 ( X k X_k Xk) 通过下投影矩阵的对应行 ( W k , : down W_{k,:}^{\text{down}} Wk,:down) 独立地贡献到输出 ( Y Y Y)。具体地,输出 ( Y Y Y) 是所有通道的加权和:
      Y = X 1 W 1 , : down + X 2 W 2 , : down + ⋯ + X I W I , : down Y = X_1 W_{1,:}^{\text{down}} + X_2 W_{2,:}^{\text{down}} + \dots + X_I W_{I,:}^{\text{down}} Y=X1W1,:down+X2W2,:down++XIWI,:down
      每个 ( X k W k , : down X_k W_{k,:}^{\text{down}} XkWk,:down) 是一个独立的分量,类似于CNN中每个特征图通道对输出的贡献。
  2. 类比CNN中的通道

    • 在CNN中,卷积层的输入是一个多通道张量(例如,( C × H × W C \times H \times W C×H×W),其中 ( C C C) 是通道数)。每个通道(feature map)通过卷积核独立计算,输出是所有通道贡献的加和。
    • 在FFN中,中间激活 ( X X X) 的维度 ( I I I) 可以看作“通道数”,每个 ( X k X_k Xk) 类似于一个通道的激活值,通过权重 ( W k , : down W_{k,:}^{\text{down}} Wk,:down) 映射到输出空间。这种结构与CNN的通道处理有相似的独立性和并行性,因此借用了“通道”这一术语。
  3. 语义与功能

    • 每个 ( X k X_k Xk) 表示上投影和激活后提取的某个特征分量(feature component)。中间维度 ( I I I) 通常很大(例如,Llama-3.1-70B的FFN中间维度约为28,672),每个 ( X k X_k Xk) 可以看作一个独立的“特征通道”,捕捉输入的不同方面。
    • “通道”这一术语强调了 ( X k X_k Xk) 的模块化作用:每个通道通过独立的权重向量 ( W k , : down W_{k,:}^{\text{down}} Wk,:down) 影响输出,类似于CNN中通道的语义。
  4. 文献中的惯例

    • 在深度学习文献中,FFN的中间维度经常被称为“通道”或“隐藏单元”(hidden units)。例如,修剪(pruning)或稀疏化(sparsification)研究(如Wanda [40])常将FFN中间维度分解为独立通道,分析其贡献。
    • Puzzle框架沿用了这一术语,将 ( X k X_k Xk) 称为通道,以突出其在输出形成中的独立作用。
2.3 ( X k X_k Xk) 的来源

中间激活 ( X ∈ R I X \in \mathbb{R}^I XRI) 的生成过程如下:

  • 输入:变换器层输入 ( Z ∈ R H Z \in \mathbb{R}^H ZRH)(例如,注意力层的输出,隐维度 ( H = 7 , 168 H = 7,168 H=7,168) for Llama-3.1-70B)。
  • 上投影:通过矩阵 ( W up ∈ R H × I W^{\text{up}} \in \mathbb{R}^{H \times I} WupRH×I),将 ( Z Z Z) 映射到高维空间:
    U = W up Z + b up ∈ R I U = W^{\text{up}} Z + b^{\text{up}} \in \mathbb{R}^I U=WupZ+bupRI
  • 激活函数:应用GeLU非线性激活,生成中间激活:
    X = GeLU ( U ) ∈ R I X = \text{GeLU}(U) \in \mathbb{R}^I X=GeLU(U)RI
    其中,( X k X_k Xk) 是向量 ( X X X) 的第 ( k k k) 个元素,代表第 ( k k k) 个通道的激活值。

关键点

  • ( X k X_k Xk) 不是矩阵的行,而是向量 ( X X X) 的一个标量分量(即 ( X ∈ R I X \in \mathbb{R}^I XRI) 的第 ( k k k) 个元素)。
  • ( X X X) 是通过上投影和GeLU激活生成的特征向量,其维度 ( I I I) 表示FFN的中间表示能力。每个 ( X k X_k Xk) 是这一表示的一个“通道”,通过下投影权重 ( W k , : down W_{k,:}^{\text{down}} Wk,:down) 映射到输出。

3. 为什么不用“行”而是“通道”?

你提到“通道就是中间输入(经过上投影和激活函数)( X X X) 矩阵的第 ( k k k) 行吗?”——答案是不是行,而是向量 ( X X X) 的第 ( k k k) 个元素。以下解释为什么不用“行”而是“通道”:

  1. ( X X X) 不是矩阵

    • ( X ∈ R I X \in \mathbb{R}^I XRI) 是一个一维向量(维度为 ( I I I)),而不是矩阵。因此,( X k X_k Xk) 是 ( X X X) 的第 ( k k k) 个标量分量,而不是矩阵的行。
    • 在FFN中,输入 ( Z Z Z) 和输出 ( Y Y Y) 也是向量(维度为 ( H H H)),整个计算是向量到向量的映射。中间激活 ( X X X) 的每个元素 ( X k X_k Xk) 是一个独立的标量,称为“通道”。
  2. “行”的误解

    • 如果将 ( X X X) 视为矩阵,可能是在考虑批量输入(batch processing)场景。例如,批量输入 ( Z ∈ R B × H Z \in \mathbb{R}^{B \times H} ZRB×H)(( B B B) 为批大小),上投影后得到 ( U ∈ R B × I U \in \mathbb{R}^{B \times I} URB×I),激活后 ( X ∈ R B × I X \in \mathbb{R}^{B \times I} XRB×I)。在这种情况下,( X X X) 的每一行对应一个样本的中间激活向量。
    • 但是,在Puzzle的Channel Contribution方法中,分析是针对单个样本的激活向量 ( X ∈ R I X \in \mathbb{R}^I XRI) 进行的(即使在批量中,也逐样本计算通道贡献)。因此,( X k X_k Xk) 是向量 ( X X X) 的第 ( k k k) 个元素,而不是矩阵的行。
  3. “通道”的合理性

    • 术语“通道”强调 ( X k X_k Xk) 的独立性和功能性。每个 ( X k X_k Xk) 通过 ( W k , : down W_{k,:}^{\text{down}} Wk,:down) 独立影响输出 ( Y Y Y),类似于CNN中通道的独立贡献。
    • 使用“通道”而不是“元素”或“分量”是为了与深度学习文献保持一致,尤其是在修剪、量化或蒸馏等场景中,FFN中间维度的分量常被称为通道。

4. 通道贡献公式中的“通道”

现在我们回到Channel Contribution公式的上下文,重新审视“通道”的作用:

C k ( X ) = ∥ ( ∑ j = 1 I X j W j , : down ) − ( ∑ j ≠ k X j W j , : down ) ∥ 2 = ∣ X k ∣ ⋅ ∥ W k , : down ∥ 2 C_k(X) = \left\| \left( \sum_{j=1}^I X_j W_{j,:}^{\text{down}} \right) - \left( \sum_{j \neq k} X_j W_{j,:}^{\text{down}} \right) \right\|_2 = \left| X_k \right| \cdot \left\| W_{k,:}^{\text{down}} \right\|_2 Ck(X)= (j=1IXjWj,:down) j=kXjWj,:down 2=Xk Wk,:down 2

  • 含义

    • ( C k ( X ) C_k(X) Ck(X)) 衡量第 ( k k k) 个通道(即 ( X k X_k Xk))对FFN输出 ( Y Y Y) 的贡献。
    • 贡献定义为:如果移除第 ( k k k) 个通道(即将 ( X k X_k Xk) 设为0),输出 ( Y Y Y) 的变化量(用L2范数 ( ∥ ⋅ ∥ 2 \|\cdot\|_2 2) 衡量)。
    • 推导:
      Y = ∑ j = 1 I X j W j , : down Y = \sum_{j=1}^I X_j W_{j,:}^{\text{down}} Y=j=1IXjWj,:down
      移除第 ( k k k) 个通道后,输出变为:
      Y − k = ∑ j ≠ k X j W j , : down Y_{-k} = \sum_{j \neq k} X_j W_{j,:}^{\text{down}} Yk=j=kXjWj,:down
      变化量:
      Y − Y − k = X k W k , : down Y - Y_{-k} = X_k W_{k,:}^{\text{down}} YYk=XkWk,:down
      L2范数:
      C k ( X ) = ∥ Y − Y − k ∥ 2 = ∥ X k W k , : down ∥ 2 = ∣ X k ∣ ⋅ ∥ W k , : down ∥ 2 C_k(X) = \| Y - Y_{-k} \|_2 = \| X_k W_{k,:}^{\text{down}} \|_2 = |X_k| \cdot \| W_{k,:}^{\text{down}} \|_2 Ck(X)=YYk2=XkWk,:down2=XkWk,:down2
      这里,( X k X_k Xk) 是标量,( ∣ X k ∣ |X_k| Xk) 是其绝对值;( W k , : down ∈ R H W_{k,:}^{\text{down}} \in \mathbb{R}^H Wk,:downRH) 是权重向量,( ∥ W k , : down ∥ 2 \| W_{k,:}^{\text{down}} \|_2 Wk,:down2) 是其L2范数。
  • “通道”的作用

    • ( X k X_k Xk)(第 ( k k k) 个通道的激活值)决定了该通道的信号强度。如果 ( X k ≈ 0 X_k \approx 0 Xk0),该通道对输出的贡献很小。
    • ( W k , : down W_{k,:}^{\text{down}} Wk,:down)(第 ( k k k) 个通道的权重)决定了该通道的映射能力。如果 ( ∥ W k , : down ∥ 2 \| W_{k,:}^{\text{down}} \|_2 Wk,:down2) 很小,说明该通道的权重不重要。
    • 贡献 ( C k ( X ) C_k(X) Ck(X)) 综合了两者:激活强度 ( ∣ X k ∣ |X_k| Xk) 和权重重要性 ( ∥ W k , : down ∥ 2 \| W_{k,:}^{\text{down}} \|_2 Wk,:down2)。
  • 计算过程

    • 在校准数据集上运行前向传播,收集每个样本的中间激活 ( X X X)。
    • 对每个通道 ( k k k),计算 ( C k ( X ) = ∣ X k ∣ ⋅ ∥ W k , : down ∥ 2 C_k(X) = |X_k| \cdot \| W_{k,:}^{\text{down}} \|_2 Ck(X)=XkWk,:down2),并在数据集上取平均值,得到通道 ( k k k) 的平均贡献。
    • 根据贡献排序,优先修剪低贡献通道(如在初始化缩减维度FFN时移除 ( X k X_k Xk) 和 ( W k , : down W_{k,:}^{\text{down}} Wk,:down))。

5. 为什么称为“通道”:直观解释

为了更直观地理解为什么 ( X k X_k Xk) 被称为“通道”,可以从以下角度思考:

  1. 特征提取的视角

    • FFN的上投影和激活函数(( X = GeLU ( W up Z + b up X = \text{GeLU}(W^{\text{up}} Z + b^{\text{up}} X=GeLU(WupZ+bup))将输入 ( Z Z Z) 转换为高维特征表示 ( X ∈ R I X \in \mathbb{R}^I XRI)。每个 ( X k X_k Xk) 是这一表示的一个分量,捕捉输入的某个特定模式或特征。
    • 类似于CNN中每个通道捕捉图像的某种特征(如边缘、纹理),FFN的每个 ( X k X_k Xk) 可以看作一个“特征通道”,通过 ( W k , : down W_{k,:}^{\text{down}} Wk,:down) 映射到输出空间。
  2. 并行处理的视角

    • FFN的中间维度 ( I I I) 通常很大(例如,28,672),可以看作并行处理 ( I I I) 个独立的分量。每个分量(通道)通过独立的权重向量 ( W k , : down W_{k,:}^{\text{down}} Wk,:down) 贡献到输出,类似于多通道并行计算。
  3. 修剪的视角

    • 在修剪或蒸馏任务中,FFN的中间维度常被分解为独立的分量,逐一分析其重要性。术语“通道”借用了CNN的语义,用来描述这些可独立修剪的分量。

6. 回答你的具体疑问

通道就是中间输入(经过上投影和激活函数)( X X X) 矩阵的第 ( k k k) 行吗?

  • 答案:不是。( X ∈ R I X \in \mathbb{R}^I XRI) 是一个向量,不是矩阵。( X k X_k Xk) 是 ( X X X) 的第 ( k k k) 个元素(标量),而不是矩阵的行。
  • 如果考虑批量输入,( X ∈ R B × I X \in \mathbb{R}^{B \times I} XRB×I)(( B B B) 为批大小),每一行是单个样本的激活向量。但在Channel Contribution方法中,分析是针对单个样本的 ( X ∈ R I X \in \mathbb{R}^I XRI),因此 ( X k X_k Xk) 是向量的第 ( k k k) 个分量。

为什么它称为通道呢?这是如何来的?

  • 答案
    • “通道”是指 ( X k X_k Xk),即中间激活向量 ( X ∈ R I X \in \mathbb{R}^I XRI) 的第 ( k k k) 个元素。称为“通道”是因为:
      1. 每个 ( X k X_k Xk) 独立地通过权重 ( W k , : down W_{k,:}^{\text{down}} Wk,:down) 贡献到输出,类似于CNN中通道的独立性。
      2. 术语“通道”借用了CNN的语义,泛化到FFN的中间维度,表示可独立分析的特征分量。
      3. 文献惯例(如Wanda等修剪方法)将FFN中间维度的分量称为通道,Puzzle沿用了这一术语。
    • 来源:( X k X_k Xk) 来自FFN的上投影和激活:
      X = GeLU ( W up Z + b up ) X = \text{GeLU}(W^{\text{up}} Z + b^{\text{up}}) X=GeLU(WupZ+bup)
      其中 ( X k X_k Xk) 是 ( X X X) 的第 ( k k k) 个元素,代表第 ( k k k) 个通道的激活值。

7. 总结

  • 通道的定义:在Puzzle的FFN中,“通道”是指中间激活向量 ( X ∈ R I X \in \mathbb{R}^I XRI) 的每个元素 ( X k X_k Xk)(标量),而不是矩阵的行。每个 ( X k X_k Xk) 通过下投影权重 ( W k , : down W_{k,:}^{\text{down}} Wk,:down) 独立贡献到输出 ( Y Y Y)。
  • 为什么叫通道
    • ( X k X_k Xk) 的独立性和并行性类似于CNN中的特征通道。
    • 术语“通道”借用了CNN的语义,泛化到FFN的中间维度,符合深度学习文献惯例。
    • 每个 ( X k X_k Xk) 代表一个特征分量,通过权重映射到输出,适合称为“通道”。
  • 来源:( X k X_k Xk) 是FFN上投影(( W up Z + b up W^{\text{up}} Z + b^{\text{up}} WupZ+bup))和GeLU激活后生成的中间激活 ( X X X) 的第 ( k k k) 个元素。
  • 在Channel Contribution中的作用:通道贡献 ( C k ( X ) = ∣ X k ∣ ⋅ ∥ W k , : down ∥ 2 C_k(X) = |X_k| \cdot \| W_{k,:}^{\text{down}} \|_2 Ck(X)=XkWk,:down2) 衡量第 ( k k k) 个通道对输出的重要性,用于初始化缩减维度的FFN子块。

后记

2025年5月8日于上海,在grok 3大模型辅助下完成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值