阅读翻译Mathematics for Machine Learning之2.6 Generating Set and Basis

阅读翻译Mathematics for Machine Learning之2.6 Generating Set and Basis

关于:

  • 首次发表日期:2024-07-19
  • Mathematics for Machine Learning官方链接: https://mml-book.com
  • ChatGPT和KIMI机翻,人工润色
  • 非数学专业,如有错误,请不吝指出

2.6.1 Basis and Rank (基与秩)

定义 2.13(生成集与张成)。考虑一个向量空间 V = ( V , + , ⋅ ) V=(\mathcal{V}, +, \cdot) V=(V,+,) 和一组向量 A = { x 1 , … , x k } ⊆ V \mathcal{A}=\left\{\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\right\} \subseteq \mathcal{V} A={x1,,xk}V。如果 V \mathcal{V} V 中的每一个向量 v \boldsymbol{v} v 都可以表示为 x 1 , … , x k \boldsymbol{x}_1, \ldots, \boldsymbol{x}_k x1,,xk 的线性组合,则称 A \mathcal{A} A V V V 的一个生成集。向量 A \mathcal{A} A 中所有向量的线性组合构成的集合称为 A \mathcal{A} A 的张成。如果 A \mathcal{A} A 张成了向量空间 V V V,我们写作 V = span ⁡ [ A ] V=\operatorname{span}[\mathcal{A}] V=span[A] V = span ⁡ [ x 1 , … , x k ] V=\operatorname{span}\left[\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\right] V=span[x1,,xk]

生成集是张成向量(子)空间的向量集合,即每一个向量都可以表示为生成集中向量的线性组合。现在,我们将更加具体地描述张成向量(子)空间的最小生成集。

定义 2.14(基)。考虑一个向量空间 V = ( V , + , ⋅ ) V=(\mathcal{V}, +, \cdot) V=(V,+,) A ⊆ V \mathcal{A} \subseteq \mathcal{V} AV。如果不存在比 A \mathcal{A} A 更小的集合 A ~ ⊊ A ⊆ V \tilde{\mathcal{A}} \subsetneq \mathcal{A} \subseteq \mathcal{V} A~AV 能张成 V V V,那么 V V V 的生成集 A \mathcal{A} A 被称为最小生成集 V V V 的每一个线性无关的生成集都是最小的,并且被称为 V V V 的一个基。

V = ( V , + , ⋅ ) V=(\mathcal{V},+, \cdot) V=(V,+,) 是一个向量空间, B ⊆ V , B ≠ ∅ \mathcal{B} \subseteq \mathcal{V}, \mathcal{B} \neq \emptyset BV,B=。那么,以下陈述是等价的:

  • B \mathcal{B} B V V V 的一个基。
  • B \mathcal{B} B 是一个最小生成集。
  • B \mathcal{B} B V V V 中的最大线性无关向量集,即向这个集合中添加任何其他向量都会使其线性相关。
  • 每一个向量 x ∈ V \boldsymbol{x} \in V xV 都是来自 B \mathcal{B} B 的向量的线性组合,并且每个线性组合都是唯一的,即:

x = ∑ i = 1 k λ i b i = ∑ i = 1 k ψ i b i (2.77) \boldsymbol{x}=\sum_{i=1}^k \lambda_i \boldsymbol{b}_i=\sum_{i=1}^k \psi_i \boldsymbol{b}_i \tag{2.77} x=i=1kλibi=i=1kψibi(2.77)

λ i , ψ i ∈ R , b i ∈ B \lambda_i, \psi_i \in \mathbb{R}, \boldsymbol{b}_i \in \mathcal{B} λi,ψiR,biB,这意味着 λ i = ψ i , i = 1 , … , k \lambda_i=\psi_i, i=1, \ldots, k λi=ψi,i=1,,k

基是一个最小的生成集和一个最大的线性无关向量集合。


**例2.16**
  • R 3 \mathbb{R}^3 R3 中,标准基是
    B = { [ 1 0 0 ] , [ 0 1 0 ] , [ 0 0 1 ] } \mathcal{B}=\left\{\left[\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right],\left[\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right],\left[\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right]\right\} B= 100 , 010 , 001
  • R 3 \mathbb{R}^3 R3 中不同的基是
    B 1 = { [ 1 0 0 ] , [ 1 1 0 ] , [ 1 1 1 ] } , B 2 = { [ 0.5 0.8 0.4 ] , [ 1.8 0.3 0.3 ] , [ − 2.2 − 1.3 3.5 ] } . \mathcal{B}_1=\left\{\left[\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right],\left[\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right],\left[\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right]\right\}, \mathcal{B}_2=\left\{\left[\begin{array}{l} 0.5 \\ 0.8 \\ 0.4 \end{array}\right],\left[\begin{array}{l} 1.8 \\ 0.3 \\ 0.3 \end{array}\right],\left[\begin{array}{c} -2.2 \\ -1.3 \\ 3.5 \end{array}\right]\right\} . B1= 100 , 110 , 111 ,B2= 0.50.80.4 , 1.80.30.3 , 2.21.33.5 .
  • 集合
    A = { [ 1 2 3 4 ] , [ 2 − 1 0 2 ] , [ 1 1 0 − 4 ] } \mathcal{A}=\left\{\left[\begin{array}{l} 1 \\ 2 \\ 3 \\ 4 \end{array}\right],\left[\begin{array}{c} 2 \\ -1 \\ 0 \\ 2 \end{array}\right],\left[\begin{array}{c} 1 \\ 1 \\ 0 \\ -4 \end{array}\right]\right\} A= 1234 , 2102 , 1104
    是线性无关的,但不是 R 4 \mathbb{R}^4 R4 的生成集(也不是基):例如,向量 [ 1 , 0 , 0 , 0 ] ⊤ [1,0,0,0]^{\top} [1,0,0,0] 不能通过 A \mathcal{A} A 中元素的线性组合得到。

注释 每个向量空间 V V V 都有一个基 B \mathcal{B} B。前面的例子表明,一个向量空间 V V V 可以有许多不同的基,即没有唯一的基。然而,所有的基都具有相同数量的元素,即基向量

我们只考虑有限维向量空间 V V V。在这种情况下, V V V 的维数是其基向量的数量,记作 dim ⁡ ( V ) \operatorname{dim}(V) dim(V)。如果 U ⊆ V U \subseteq V UV V V V 的子空间,则 dim ⁡ ( U ) ⩽ dim ⁡ ( V ) \operatorname{dim}(U) \leqslant \operatorname{dim}(V) dim(U)dim(V),且当且仅当 U = V U=V U=V dim ⁡ ( U ) = dim ⁡ ( V ) \operatorname{dim}(U) = \operatorname{dim}(V) dim(U)=dim(V) 。直观地说,向量空间的维数可以理解为这个空间中独立方向的数量。

注释 向量空间的维数不一定是向量中元素的数量。例如,向量空间 V = span ⁡ [ [ 0 1 ] ] V=\operatorname{span}[\left[\begin{array}{l}0 \\ 1\end{array}\right]] V=span[[01]] 是一维的,尽管基向量具有两个元素。

向量空间的维数对应于其基向量的数量。

注释 子空间 U = span ⁡ [ x 1 , … , x m ] ⊆ R n U=\operatorname{span}\left[\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m\right] \subseteq \mathbb{R}^n U=span[x1,,xm]Rn 的一个基可以通过以下步骤找到:

  1. 将张成向量写成矩阵 A \boldsymbol{A} A 的列。
  2. 求解矩阵 A \boldsymbol{A} A 的行阶梯形式。
  3. 与枢轴列相关联的张成向量构成 U U U 的一个基。

2.6.2 Rank(秩)

一个矩阵 A ∈ R m × n \boldsymbol{A} \in \mathbb{R}^{m \times n} ARm×n 的线性无关列的数量等于线性无关行的数量,并且被称为 A \boldsymbol{A} A 的秩,表示为 rk ⁡ ( A ) \operatorname{rk}(\boldsymbol{A}) rk(A)

注释。矩阵的秩具有一些重要性质:

  • rk ⁡ ( A ) = rk ⁡ ( A ⊤ ) \operatorname{rk}(\boldsymbol{A})=\operatorname{rk}\left(\boldsymbol{A}^{\top}\right) rk(A)=rk(A),即,列秩等于行秩。
  • A ∈ R m × n \boldsymbol{A} \in \mathbb{R}^{m \times n} ARm×n 的列张成一个子空间 U ⊆ R m U \subseteq \mathbb{R}^m URm,其维数为 dim ⁡ ( U ) = rk ⁡ ( A ) \operatorname{dim}(U)=\operatorname{rk}(\boldsymbol{A}) dim(U)=rk(A)。稍后我们将这个子空间称为像或值域。通过应用高斯消元法到 A \boldsymbol{A} A 可以找到 U U U 的一个基,以识别枢轴列。
  • A ∈ R m × n \boldsymbol{A} \in \mathbb{R}^{m \times n} ARm×n 的行张成一个子空间 W ⊆ R n W \subseteq \mathbb{R}^n WRn,其维数为 dim ⁡ ( W ) = rk ⁡ ( A ) \operatorname{dim}(W)=\operatorname{rk}(\boldsymbol{A}) dim(W)=rk(A)。通过应用高斯消元法到 A ⊤ \boldsymbol{A}^{\top} A 可以找到 W W W 的一个基。
  • 对于所有的 A ∈ R n × n \boldsymbol{A} \in \mathbb{R}^{n \times n} ARn×n,如果且仅如果 rk ⁡ ( A ) = n \operatorname{rk}(\boldsymbol{A})=n rk(A)=n A \boldsymbol{A} A 是正则的(可逆的)。
  • 对于所有的 A ∈ R m × n \boldsymbol{A} \in \mathbb{R}^{m \times n} ARm×n 和所有的 b ∈ R m \boldsymbol{b} \in \mathbb{R}^m bRm,线性方程组 A x = b \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} Ax=b 可以求解当且仅当 rk ⁡ ( A ) = rk ⁡ ( A ∣ b ) \operatorname{rk}(\boldsymbol{A})=\operatorname{rk}(\boldsymbol{A} \mid \boldsymbol{b}) rk(A)=rk(Ab),其中 A ∣ b \boldsymbol{A} \mid \boldsymbol{b} Ab 表示增广系统。
  • 对于 A ∈ R m × n \boldsymbol{A} \in \mathbb{R}^{m \times n} ARm×n A x = 0 \boldsymbol{A x}=\mathbf{0} Ax=0 的解空间具有维数 n − rk ⁡ ( A ) n-\operatorname{rk}(\boldsymbol{A}) nrk(A)。稍后,我们将这个子空间称为核或零空间。
  • 如果矩阵 A ∈ R m × n \boldsymbol{A} \in \mathbb{R}^{m \times n} ARm×n 的秩等于相同维度矩阵的最大可能秩,则称其具有满秩。这意味着满秩矩阵的秩是行数和列数中的较小者,即 rk ⁡ ( A ) = min ⁡ ( m , n ) \operatorname{rk}(\boldsymbol{A})=\min (m, n) rk(A)=min(m,n)。如果矩阵没有满秩,则称其为秩亏损的。

例子2.18(秩)
  • A = [ 1 0 1 0 1 1 0 0 0 ] \boldsymbol{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right] A= 100010110

矩阵 A \boldsymbol{A} A 有两行/列是线性无关的,因此 rk ⁡ ( A ) = 2 \operatorname{rk}(\boldsymbol{A})=2 rk(A)=2

  • A = [ 1 2 1 − 2 − 3 1 3 5 0 ] \boldsymbol{A}=\left[\begin{array}{ccc}1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0\end{array}\right] A= 123235110

我们使用高斯消元法来确定秩:
[ 1 2 1 − 2 − 3 1 3 5 0 ] ⇝ ⋯ ⇝ [ 1 2 1 0 1 3 0 0 0 ] . \left[\begin{array}{ccc} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{array}\right] \rightsquigarrow \cdots \rightsquigarrow\left[\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{array}\right] . 123235110 100210130 .

在这里,我们看到线性无关的行和列的数量是 2,因此 rk ⁡ ( A ) = 2 \operatorname{rk}(\boldsymbol{A})=2 rk(A)=2


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值