目录
2. 创建 Python 3.8 的 Anaconda 虚拟环境
1. 安装 CUDA 和 cuDNN
首先,确保NVIDIA 显卡支持 CUDA,并安装相应版本的驱动程序。
通过英特尔的显卡控制面板查看显卡驱动支持的CUDA版本
首先鼠标右击桌面-显示更多选项-NVIDIA控制面板-点击弹出界面左下角的(系统信息)-点击弹出界面的组件。
或者通过win+R命令nvidia-smi。(一定要提前安装好英伟达显卡)
如下12.7,表示最高可装12.7版本CUDA,与上图中的支持的最高cuda版本一致。自己安装的版本可以低一点。
1.1 下载并安装 CUDA
-
下载 CUDA:访问 NVIDIA 官方网站,下载与您的显卡和操作系统兼容的 CUDA 版本。例如,CUDA 11.3。
这里不再赘述安装cuda的过程,推荐一篇博文以供参考,比较简单。深度学习环境搭建(GPU)CUDA安装(完全版)_cuda环境配置-CSDN博客 -
安装 CUDA:运行下载的安装程序,按照提示完成安装。建议选择默认安装选项。
1.2 下载并安装 cuDNN
-
下载 cuDNN:前往 NVIDIA cuDNN 下载页面,下载与您安装的 CUDA 版本匹配的 cuDNN 版本。例如,cuDNN 8.2 对应 CUDA 11.x。
-
安装 cuDNN:
-
解压下载的 cuDNN 文件。
-
将
bin
、include
和lib
文件夹中的内容复制到相应的 CUDA 安装目录下。例如,将bin
中的文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\bin
。
-
1.3 设置环境变量
-
打开环境变量设置:右键点击“此电脑” > “属性” > “高级系统设置” > “环境变量”。
-
添加系统变量:
-
CUDA_HOME:变量名填写
CUDA_HOME
,变量值填写 CUDA 安装路径,例如C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3
。 -
Path:编辑
Path
变量,添加以下路径:-
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\bin
-
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\libnvvp
-
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\include
-
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\lib\x64
-
-
2. 创建 Python 3.8 的 Anaconda 虚拟环境
使用 Anaconda 创建虚拟环境,有助于管理不同项目的依赖。
2.1 安装 Anaconda
-
下载 Anaconda:前往 Anaconda 官方网站,下载适用于 Windows 的 Anaconda 安装包。
-
安装 Anaconda:运行安装程序,建议选择默认安装选项,并将 Anaconda 添加到系统环境变量中。
2.2 创建虚拟环境
-
打开 Anaconda Prompt:在开始菜单中搜索并打开 Anaconda Prompt。
-
创建环境:执行以下命令创建名为
yolov8_env
的 Python 3.8 环境:conda create -n yolov8_env python=3.8
-
激活环境:执行以下命令激活新创建的环境:
conda activate yolov8_env
3. 离线安装 PyTorch 和 torchvision
由于网络原因,可能需要离线安装 PyTorch 和 torchvision。
3.1 下载 whl 文件
-
访问 PyTorch 官方离线安装页面(这样更快):前往 PyTorch 官方离线安装页面。
-
选择版本:根据您的系统和 CUDA 版本,选择适当的 whl 文件。例如,对于 Python 3.8、CUDA 11.3,选择
torch-1.12.0+cu113-cp38-cp38-win_amd64.whl
和torchvision-0.13.0+cu113-cp38-cp38-win_amd64.whl
。 -
下载文件:复制链接用迅雷下会更快,将选定的文件下载到本地计算机。
3.2 安装 whl 文件
-
打开 Anaconda Prompt:确保已激活
yolov8_env
环境,切换到.whl文件所在路径。 -
安装 PyTorch:执行以下命令安装 PyTorch:
pip install torch-1.12.0+cu113-cp38-cp38-win_amd64.whl
-
安装 torchvision:执行以下命令安装 torchvision:
pip install torchvision-0.13.0+cu113-cp38-cp38-win_amd64.whl
4. 更改 pip 源
更改 pip 源可以加速包的下载速度,特别是在中国地区。
4.1 查看当前 pip 源
执行以下命令查看当前配置的 pip 源:
pip config list
4.2 临时更改 pip 源
在安装包时,使用 -i
参数指定临时源。例如,使用阿里云源安装包
pip install 包名 -i https://mirrors.aliyun.com/pypi/simple/
4.3 永久更改 pip 源
-
获取 APPDATA 目录:执行以下命令获取 APPDATA 目录路径:
echo %APPDATA%
假设输出为
C:\Users\YourUsername\AppData\Roaming
。 -
创建或编辑 pip 配置文件:在
C:\Users\YourUsername\AppData\Roaming\pip
目录下,创建或编辑pip.ini
文件,添加以下内容:[global] index-url = https://mirrors.aliyun.com/pypi/simple/
-
保存并关闭文件:保存更改后,pip 将默认使用阿里云源进行包的下载和安装。
5. 可编辑模式安装ultralytics
在开发过程中,直接使用 pip install ultralytics
安装 YOLOv8 库,会将其安装到 Python 环境的 site-packages
目录中。这样,如果您在本地修改了 YOLOv8 的源码,这些改动不会直接反映到已安装的库中,因为 pip
安装的版本是独立的。
为了解决这个问题,建议使用 可编辑模式(editable mode)安装 YOLOv8。
pip install -e .
(即--editable
模式)通过在Python的site-packages
目录创建当前项目目录的符号链接,允许开发者在不复制代码的情况下将本地项目安装到环境中,使得对源代码的任何修改可立即生效,无需重新安装,从而大幅提升开发效率,适用于项目开发、调试或依赖本地未发布的版本时使用,但需确保当前目录包含setup.py
或pyproject.toml
文件以定义包结构。
克隆 YOLOv8 仓库: 首先,从 GitHub 克隆 YOLOv8 的源代码:
git clone https://github.com/ultralytics/ultralytics.git
进入项目目录: 进入克隆下来的 ultralytics
目录:
cd ultralytics
安装依赖: 确保您已经激活了之前创建的 Anaconda 虚拟环境,然后安装项目的依赖:
pip install -r requirements.txt
没有requirements.txt的话,检查是否有 pyproject.toml
或 environment.yml文件,里面有相关依赖库的说明。
以可编辑模式安装: 使用以下命令将 YOLOv8 安装为可编辑模式:
pip install -e .
6. 验证
输入下面python代码验证是否装好。
import torch
print(torch.__version__) #注意是双下划线
print(torch.version.cuda)
print(torch.cuda.is_available())
print(torch.cuda.get_device_name())
输出如下就安装成功了。