在 Windows 上使用 Anaconda 创建 配置 YOLOv8虚拟环境,并更改 pip 源以及以 可编辑模式 安装ultralytics

目录

1. 安装 CUDA 和 cuDNN

1.1 下载并安装 CUDA

1.2 下载并安装 cuDNN

1.3 设置环境变量

2. 创建 Python 3.8 的 Anaconda 虚拟环境

2.1 安装 Anaconda

2.2 创建虚拟环境

3. 离线安装 PyTorch 和 torchvision

3.1 下载 whl 文件

3.2 安装 whl 文件

4. 更改 pip 源

4.1 查看当前 pip 源

4.2 临时更改 pip 源

4.3 永久更改 pip 源

5. 可编辑模式安装ultralytics

6. 验证


1. 安装 CUDA 和 cuDNN

首先,确保NVIDIA 显卡支持 CUDA,并安装相应版本的驱动程序。

通过英特尔的显卡控制面板查看显卡驱动支持的CUDA版本

首先鼠标右击桌面-显示更多选项-NVIDIA控制面板-点击弹出界面左下角的(系统信息)-点击弹出界面的组件。

或者通过win+R命令nvidia-smi。(一定要提前安装好英伟达显卡)
如下12.7,表示最高可装12.7版本CUDA,与上图中的支持的最高cuda版本一致。自己安装的版本可以低一点。

1.1 下载并安装 CUDA

  1. 下载 CUDA:访问 NVIDIA 官方网站,下载与您的显卡和操作系统兼容的 CUDA 版本。例如,CUDA 11.3。
    这里不再赘述安装cuda的过程,推荐一篇博文以供参考,比较简单。深度学习环境搭建(GPU)CUDA安装(完全版)_cuda环境配置-CSDN博客

  2. 安装 CUDA:运行下载的安装程序,按照提示完成安装。建议选择默认安装选项。

1.2 下载并安装 cuDNN

  1. 下载 cuDNN:前往 NVIDIA cuDNN 下载页面,下载与您安装的 CUDA 版本匹配的 cuDNN 版本。例如,cuDNN 8.2 对应 CUDA 11.x。

  2. 安装 cuDNN

    • 解压下载的 cuDNN 文件。

    • binincludelib 文件夹中的内容复制到相应的 CUDA 安装目录下。例如,将 bin 中的文件复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\bin

1.3 设置环境变量

  1. 打开环境变量设置:右键点击“此电脑” > “属性” > “高级系统设置” > “环境变量”。

  2. 添加系统变量

    • CUDA_HOME:变量名填写 CUDA_HOME,变量值填写 CUDA 安装路径,例如 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3

    • Path:编辑 Path 变量,添加以下路径:

      • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\bin

      • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\libnvvp

      • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\include

      • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\lib\x64

2. 创建 Python 3.8 的 Anaconda 虚拟环境

使用 Anaconda 创建虚拟环境,有助于管理不同项目的依赖。

2.1 安装 Anaconda

  1. 下载 Anaconda:前往 Anaconda 官方网站,下载适用于 Windows 的 Anaconda 安装包。

  2. 安装 Anaconda:运行安装程序,建议选择默认安装选项,并将 Anaconda 添加到系统环境变量中。

2.2 创建虚拟环境

  1. 打开 Anaconda Prompt:在开始菜单中搜索并打开 Anaconda Prompt。

  2. 创建环境:执行以下命令创建名为 yolov8_env 的 Python 3.8 环境:

    conda create -n yolov8_env python=3.8
    
  3. 激活环境:执行以下命令激活新创建的环境:

    conda activate yolov8_env
    

3. 离线安装 PyTorch 和 torchvision

由于网络原因,可能需要离线安装 PyTorch 和 torchvision。

3.1 下载 whl 文件

  1. 访问 PyTorch 官方离线安装页面(这样更快):前往 PyTorch 官方离线安装页面

  2. 选择版本:根据您的系统和 CUDA 版本,选择适当的 whl 文件。例如,对于 Python 3.8、CUDA 11.3,选择 torch-1.12.0+cu113-cp38-cp38-win_amd64.whltorchvision-0.13.0+cu113-cp38-cp38-win_amd64.whl

  3. 下载文件:复制链接用迅雷下会更快,将选定的文件下载到本地计算机。

3.2 安装 whl 文件

  1. 打开 Anaconda Prompt:确保已激活 yolov8_env 环境,切换到.whl文件所在路径。

  2. 安装 PyTorch:执行以下命令安装 PyTorch:

    pip install torch-1.12.0+cu113-cp38-cp38-win_amd64.whl
    
  3. 安装 torchvision:执行以下命令安装 torchvision:

    pip install torchvision-0.13.0+cu113-cp38-cp38-win_amd64.whl
    

4. 更改 pip 源

更改 pip 源可以加速包的下载速度,特别是在中国地区。

4.1 查看当前 pip 源

执行以下命令查看当前配置的 pip 源:

pip config list

4.2 临时更改 pip 源

在安装包时,使用 -i 参数指定临时源。例如,使用阿里云源安装包

pip install 包名 -i https://mirrors.aliyun.com/pypi/simple/

4.3 永久更改 pip 源

  1. 获取 APPDATA 目录:执行以下命令获取 APPDATA 目录路径:

    echo %APPDATA%
    

    假设输出为 C:\Users\YourUsername\AppData\Roaming

  2. 创建或编辑 pip 配置文件:在 C:\Users\YourUsername\AppData\Roaming\pip 目录下,创建或编辑 pip.ini 文件,添加以下内容:

    [global]
    index-url = https://mirrors.aliyun.com/pypi/simple/
    
  3. 保存并关闭文件:保存更改后,pip 将默认使用阿里云源进行包的下载和安装。

5. 可编辑模式安装ultralytics

在开发过程中,直接使用 pip install ultralytics 安装 YOLOv8 库,会将其安装到 Python 环境的 site-packages 目录中。这样,如果您在本地修改了 YOLOv8 的源码,这些改动不会直接反映到已安装的库中,因为 pip 安装的版本是独立的。

为了解决这个问题,建议使用 可编辑模式(editable mode)安装 YOLOv8。

pip install -e .(即--editable模式)通过在Python的site-packages目录创建当前项目目录的符号链接,允许开发者在不复制代码的情况下将本地项目安装到环境中,使得对源代码的任何修改可立即生效,无需重新安装,从而大幅提升开发效率,适用于项目开发、调试或依赖本地未发布的版本时使用,但需确保当前目录包含setup.pypyproject.toml文件以定义包结构。

克隆 YOLOv8 仓库: 首先,从 GitHub 克隆 YOLOv8 的源代码:

git clone https://github.com/ultralytics/ultralytics.git

进入项目目录: 进入克隆下来的 ultralytics 目录:

cd ultralytics

安装依赖: 确保您已经激活了之前创建的 Anaconda 虚拟环境,然后安装项目的依赖:

pip install -r requirements.txt

没有requirements.txt的话,检查是否有 pyproject.toml 或 environment.yml文件,里面有相关依赖库的说明。

以可编辑模式安装: 使用以下命令将 YOLOv8 安装为可编辑模式:

pip install -e .

6. 验证

输入下面python代码验证是否装好。

import torch
print(torch.__version__)  #注意是双下划线
print(torch.version.cuda)
print(torch.cuda.is_available())
print(torch.cuda.get_device_name())

输出如下就安装成功了。

### 配置和运行 YOLOv8 模型训练 #### 1. 安装 PyCharm 设置开发环境 为了在 PyCharm 中使用 YOLOv8 进行模型训练,首先需要安装合适的集成开发环境 (IDE),即 PyCharm。可以从官方下载页面获取最新版本的 PyCharm[^1]。 完成安装后,启动 PyCharm,确保已启用支持 Anaconda 的插件功能以便管理虚拟环境。 --- #### 2. 创建激活 Conda 虚拟环境 YOLOv8 对 Python 版本有一定要求,在此推荐使用 Python 3.10 或更高版本来构建虚拟环境。通过以下命令创建名为 `yolov8` 的虚拟环境: ```bash conda create -n yolov8 python=3.10 ``` 随后激活该虚拟环境以准备后续依赖项的安装: ```bash conda activate yolov8 ``` 如果未来不再需要这个虚拟环境,可以随时删除它,具体操作如下所示之一即可实现清理工作: ```bash conda env remove -n yolov8 ``` 或者指定路径移除整个目录结构下的相关内容[^3]。 --- #### 3. 在 PyCharm 中配置虚拟环境作为解释器 打开项目设置对话框 (`File -> Settings`) 后导航至 `Project: your_project_name -> Python Interpreter` 子菜单下拉列表选项卡处找到新增按钮图标点击弹窗界面里搜索刚才建立好的 conda 环境名称 “yolov8”,选定之后确认保存更改生效。 假如发现无法定位到对应位置,则可能是因为未正确初始化或存在权限冲突等问题引起;此时可尝试手动输入完整绝对路径指向目标文件夹内的 executable 文件(通常位于类似于 C:\Users\<username>\Anaconda3\envs\yolov8\python.exe 地址上)。 --- #### 4. 安装必要的库与框架 进入终端窗口执行 pip 命令加载 ultralytics 库以及其他必需组件包: ```bash pip install ultralytics ``` 这一步骤会自动处理大部分基础需求,但如果有额外扩展模块缺失情况发生时也需单独补充说明文档中的其他建议清单条目[^2]。 --- #### 5. 加载自定义数据集调整参数设定 按照教程指引准备好本地存储的数据集合及其标注信息格式转换成 COCO JSON 标准样式后上传至代码仓库根目录附近方便调用读取访问。 编辑 YAML 配置描述档明确指明类别标签数量以及划分比例分配细节等内容字段值范围合理合法合规满足算法预期输入形式标准。 --- #### 6. 编写脚本来触发训练过程 最后编写一段简单的 Python 脚本用于发起实际的学习迭代循环动作演示效果验证成果展示环节部分逻辑片段示意例如下面这样子呈现出来供参考学习借鉴用途而已非最终定稿版正式上线部署前还需要经过多轮测试优化改进完善才能达到理想状态水平高度层次之上更进一步追求卓越品质表现力强弱对比分析评估考量因素众多复杂多样难以简单概括总结一句话表达清楚明白无误才行哦! ```python from ultralytics import YOLO # Load a model model = YOLO('yolov8n.yaml') # build a new model from scratch # Use the model results = model.train(data='coco128.yaml', epochs=100, imgsz=640) # train the model success = model.val() # evaluate model performance on the validation set ``` 上述代码展示了如何利用预定义模板快速搭建起基本架构雏形框架图景轮廓线条勾勒描绘大致方向趋势走向脉络清晰可见一斑。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值