PAT(甲级)2020年冬季考试7-2 Subsequence in Substring (25分)

7-2Subsequence in Substring(25分)

A substring is a continuous part of a string. A subsequence is the part of a string that might be continuous or not but the order of the elements is maintained. For example, given the string atpaaabpabtt, pabt is a substring, while pat is a subsequence.

Now given a string S and a subsequence P, you are supposed to find the shortest substring of S that contains P. If such a solution is not unique, output the left most one.

Input Specification:

Each input file contains one test case which consists of two lines. The first line contains S and the second line P. S is non-empty and consists of no more than 10​^4​​ lower English letters. P is guaranteed to be a non-empty subsequence of S.

Output Specification:

For each case, print the shortest substring of S that contains P. If such a solution is not unique, output the left most one.

Sample Input:

atpaaabpabttpcat
pat

Sample Output:

pabt

暴力

#include<bits/stdc++.h>
using namespace std;
string ans;
int minlen = 10005;
int main() {
	string s1, s2;
	cin >> s1 >> s2;
	int len1 = s1.size(), len2 = s2.size();
	for (int i = 0; i < len1; i++) {
		if (s1[i] == s2[0]) {
			int t = 1, j = i + 1;
			for (; j < len1; j++) {
				if (s1[j] == s2[t]) t++;
				if (t == len2) break;
			}
			if (len2 == t) {
				if (j - i + 1 < minlen) {
					minlen = j - i + 1;
					ans = s1.substr(i, j - i + 1);
				} 
			}
		}
	}
	printf("%s", ans.c_str());
}
题目描述 给定K个整数组成的序列{ N1, N2, ..., NK },“连续子列”被定义为{ Ni, Ni+1, ..., Nj },其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{-2, 11, -4, 13, -5, -2},其最大子列和为20,对应子列为{ 11, -4, 13 }。 现在你应该给出一个算法,计算给定整数序列的最大子列和。 输入格式 输入第1行给出正整数K(K≤10000),第2行给出K个整数,其间以空格隔。 输出格式 在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出。 输入样例 6 -2 11 -4 13 -5 -2 输出样例 20 算法1 (暴力枚举) $O(n^2)$ 暴力枚举所有的子序列,计算它们的和,最后找到最大的和即可。 时间复杂度 枚举所有子序列,时间复杂度为$O(n^2)$。 C++ 代码 算法2 (治) $O(nlogn)$ 将序列成左右两部,最大子序列和可能在左边、右边或者跨越中间。如果最大子序列和在左边或者右边,那么可以递归求解;如果最大子序列和跨越中间,那么可以别求出左边的最大后缀和和右边的最大前缀和,然后将它们相加即可。 时间复杂度 每次递归都会将序列成两部,时间复杂度为$O(logn)$,而每次计算跨越中间的最大子序列和的时间复杂度为$O(n)$,所以总的时间复杂度为$O(nlogn)$。 C++ 代码 算法3 (动态规划) $O(n)$ 用dp[i]表示以i结尾的最大子序列和,那么dp[i]的值可以由dp[i-1]和a[i]计算得到。如果dp[i-1]是负数,那么dp[i]就是a[i];否则dp[i]就是dp[i-1]+a[i]。最后找到dp数组中的最大值即可。 时间复杂度 只需要遍历一遍数组,时间复杂度为$O(n)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值