【Rust】——共享状态并发

💻博主现有专栏:

                C51单片机(STC89C516),c语言,c++,离散数学,算法设计与分析,数据结构,Python,Java基础,MySQL,linux,基于HTML5的网页设计及应用,Rust(官方文档重点总结),jQuery,前端vue.js,Javaweb开发,Python机器学习等
🥏主页链接:

                Y小夜-CSDN博客

目录

🎯互斥器一次只允许一个线程访问数据

🎯Mutex的API

🎃在线程间共Mytex

🎃多线程和多所有权

🎃原子引用计数Arc

🎯RefCell?Rc与Mute/Arc的相似性


        在某种程度上,任何编程语言中的信道都类似于单所有权,因为一旦将一个值传送到信道中,将无法再使用这个值。共享内存类似于多所有权:多个线程可以同时访问相同的内存位置。第十五章介绍了智能指针如何使得多所有权成为可能,然而这会增加额外的复杂性,因为需要以某种方式管理这些不同的所有者。Rust 的类型系统和所有权规则极大的协助了正确地管理这些所有权。作为一个例子,让我们看看互斥器,一个更为常见的共享内存并发原语。

🎯互斥器一次只允许一个线程访问数据

        互斥器mutex)是 mutual exclusion 的缩写,也就是说,任意时刻,其只允许一个线程访问某些数据。为了访问互斥器中的数据,线程首先需要通过获取互斥器的 lock)来表明其希望访问数据。锁是一个作为互斥器一部分的数据结构,它记录谁有数据的排他访问权。因此,我们描述互斥器为通过锁系统 保护guarding)其数据。

互斥器以难以使用著称,因为你不得不记住:

  1. 在使用数据之前尝试获取锁。
  2. 处理完被互斥器所保护的数据之后,必须解锁数据,这样其他线程才能够获取锁。

        作为一个现实中互斥器的例子,想象一下在某个会议的一次小组座谈会中,只有一个麦克风。如果一位成员要发言,他必须请求或表示希望使用麦克风。一旦得到了麦克风,他可以畅所欲言,然后将麦克风交给下一位希望讲话的成员。如果一位成员结束发言后忘记将麦克风交还,其他人将无法发言。如果对共享麦克风的管理出现了问题,座谈会将无法如期进行!

        正确的管理互斥器异常复杂,这也是许多人之所以热衷于信道的原因。然而,在 Rust 中,得益于类型系统和所有权,我们不会在锁和解锁上出错。

🎯Mutex<T>的API

作为展示如何使用互斥器的例子,让我们从在单线程上下文使用互斥器开始

use std::sync::Mutex;

fn main() {
    let m = Mutex::new(5);

    {
        let mut num = m.lock().unwrap();
        *num = 6;
    }

    println!("m = {:?}", m);
}

        像很多类型一样,我们使用关联函数 new 来创建一个 Mutex<T>。使用 lock 方法获取锁,以访问互斥器中的数据。这个调用会阻塞当前线程,直到我们拥有锁为止。

        如果另一个线程拥有锁,并且那个线程 panic 了,则 lock 调用会失败。在这种情况下,没人能够再获取锁,所以这里选择 unwrap 并在遇到这种情况时使线程 panic。

        一旦获取了锁,就可以将返回值(在这里是num)视为一个其内部数据的可变引用了。类型系统确保了我们在使用 m 中的值之前获取锁。m 的类型是 Mutex<i32> 而不是 i32,所以 必须 获取锁才能使用这个 i32 值。我们是不会忘记这么做的,因为反之类型系统不允许访问内部的 i32 值。

        正如你所怀疑的,Mutex<T> 是一个智能指针。更准确的说,lock 调用 返回 一个叫做 MutexGuard 的智能指针。这个智能指针实现了 Deref 来指向其内部数据;其也提供了一个 Drop 实现当 MutexGuard 离开作用域时自动释放锁,这正发生于示例 16-12 内部作用域的结尾。为此,我们不会忘记释放锁并阻塞互斥器为其它线程所用的风险,因为锁的释放是自动发生的。

🎃在线程间共Mytex<T>

        现在让我们尝试使用 Mutex<T> 在多个线程间共享值。我们将启动十个线程,并在各个线程中对同一个计数器值加一,这样计数器将从 0 变为 10。示例 16-13 中的例子会出现编译错误,而我们将通过这些错误来学习如何使用 Mutex<T>,以及 Rust 又是如何帮助我们正确使用的。

use std::sync::Mutex;
use std::thread;

fn main() {
    let counter = Mutex::new(0);
    let mut handles = vec![];

    for _ in 0..10 {
        let handle = thread::spawn(move || {
            let mut num = counter.lock().unwrap();

            *num += 1;
        });
        handles.push(handle);
    }

    for handle in handles {
        handle.join().unwrap();
    }

    println!("Result: {}", *counter.lock().unwrap());
}

        这里创建了一个 counter 变量来存放内含 i32 的 Mutex<T>,,接下来遍历 range 创建了 10 个线程。使用了 thread::spawn 并对所有线程使用了相同的闭包:它们每一个都将调用 lock 方法来获取 Mutex<T> 上的锁,接着将互斥器中的值加一。当一个线程结束执行,num 会离开闭包作用域并释放锁,这样另一个线程就可以获取它了。

🎃多线程和多所有权

        通过使用智能指针 Rc<T> 来创建引用计数的值,以便拥有多所有者。让我们在这也这么做看看会发生什么。

use std::rc::Rc;
use std::sync::Mutex;
use std::thread;

fn main() {
    let counter = Rc::new(Mutex::new(0));
    let mut handles = vec![];

    for _ in 0..10 {
        let counter = Rc::clone(&counter);
        let handle = thread::spawn(move || {
            let mut num = counter.lock().unwrap();

            *num += 1;
        });
        handles.push(handle);
    }

    for handle in handles {
        handle.join().unwrap();
    }

    println!("Result: {}", *counter.lock().unwrap());
}

再一次编译并...出现了不同的错误!编译器真是教会了我们很多!

$ cargo run
   Compiling shared-state v0.1.0 (file:///projects/shared-state)
error[E0277]: `Rc<Mutex<i32>>` cannot be sent between threads safely
  --> src/main.rs:11:36
   |
11 |           let handle = thread::spawn(move || {
   |                        ------------- ^------
   |                        |             |
   |  ______________________|_____________within this `[closure@src/main.rs:11:36: 11:43]`
   | |                      |
   | |                      required by a bound introduced by this call
12 | |             let mut num = counter.lock().unwrap();
13 | |
14 | |             *num += 1;
15 | |         });
   | |_________^ `Rc<Mutex<i32>>` cannot be sent between threads safely
   |
   = help: within `[closure@src/main.rs:11:36: 11:43]`, the trait `Send` is not implemented for `Rc<Mutex<i32>>`
note: required because it's used within this closure
  --> src/main.rs:11:36
   |
11 |         let handle = thread::spawn(move || {
   |                                    ^^^^^^^
note: required by a bound in `spawn`

For more information about this error, try `rustc --explain E0277`.
error: could not compile `shared-state` due to previous error

        哇哦,错误信息太长不看!这里是一些需要注意的重要部分:第一行错误表明 `Rc<Mutex<i32>>` cannot be sent between threads safely。编译器也告诉了我们原因 the trait `Send` is not implemented for `Rc<Mutex<i32>>`。下一部分会讲到 Send:这是确保所使用的类型可以用于并发环境的 trait 之一。

        不幸的是,Rc<T> 并不能安全的在线程间共享。当 Rc<T> 管理引用计数时,它必须在每一个 clone 调用时增加计数,并在每一个克隆被丢弃时减少计数。Rc<T> 并没有使用任何并发原语,来确保改变计数的操作不会被其他线程打断。在计数出错时可能会导致诡异的 bug,比如可能会造成内存泄漏,或在使用结束之前就丢弃一个值。我们所需要的是一个完全类似 Rc<T>,又以一种线程安全的方式改变引用计数的类型。

🎃原子引用计数Arc<T>

所幸 Arc<T> 正是 这么一个类似 Rc<T> 并可以安全的用于并发环境的类型。字母 “a” 代表 原子性atomic),所以这是一个 原子引用计数atomically reference counted)类型。

   Arc<T> 和 Rc<T> 有着相同的 API,所以修改程序中的 use 行和 new 调用。示例中的代码最终可以编译和运行:

use std::sync::{Arc, Mutex};
use std::thread;

fn main() {
    let counter = Arc::new(Mutex::new(0));
    let mut handles = vec![];

    for _ in 0..10 {
        let counter = Arc::clone(&counter);
        let handle = thread::spawn(move || {
            let mut num = counter.lock().unwrap();

            *num += 1;
        });
        handles.push(handle);
    }

    for handle in handles {
        handle.join().unwrap();
    }

    println!("Result: {}", *counter.lock().unwrap());
}

        成功了!我们从 0 数到了 10,这可能并不是很显眼,不过一路上我们确实学习了很多关于 Mutex<T> 和线程安全的内容!这个例子中构建的结构可以用于比增加计数更为复杂的操作。使用这个策略,可将计算分成独立的部分,分散到多个线程中,接着使用 Mutex<T> 使用各自的结算结果更新最终的结果。

🎯RefCell<T>?Rc<T>与Mute/Arc<T>的相似性

        你可能注意到了,因为 counter 是不可变的,不过可以获取其内部值的可变引用;这意味着 Mutex<T> 提供了内部可变性,就像 Cell 系列类型那样。正如以前使用 RefCell<T> 可以改变 Rc<T> 中的内容那样,同样的可以使用 Mutex<T> 来改变 Arc<T> 中的内容。

        另一个值得注意的细节是 Rust 不能避免使用 Mutex<T> 的全部逻辑错误。回忆一下以前使用 Rc<T> 就有造成引用循环的风险,这时两个 Rc<T> 值相互引用,造成内存泄漏。同理,Mutex<T> 也有造成 死锁deadlock)的风险。这发生于当一个操作需要锁住两个资源而两个线程各持一个锁,这会造成它们永远相互等待。如果你对这个主题感兴趣,尝试编写一个带有死锁的 Rust 程序,接着研究任何其他语言中使用互斥器的死锁规避策略并尝试在 Rust 中实现它们。标准库中 Mutex<T> 和 MutexGuard 的 API 文档会提供有用的信息。

评论 73
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Y小夜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值