笛卡尔坐标系与右手定则

本文介绍了笛卡尔坐标系,包括直角坐标系和斜角坐标系的概念,以及如何从仿射坐标系推广到空间。同时,详细阐述了空间笛卡尔直角坐标系的定义,并解释了笛卡尔坐标与直角坐标之间的转换。此外,文章还讨论了右手定则在确定三维坐标轴正方向中的应用,以及其在WebGL中的使用。
摘要由CSDN通过智能技术生成

笛卡尔坐标系(Cartesiancoordinates) 就是直角坐标系和斜角坐标系的统称。

      相交于原点的两条数轴,构成了平面仿射坐标系。如两条数轴上的度量单位相等,则称此仿射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。

  仿射坐标系和笛卡尔坐标系平面向空间的推广

  相交于原点的三条不共面的数轴构成空间的仿射坐标系。三条数轴上度量单位相等的仿射坐标系被称为空间笛卡尔坐标系。三条数轴互相垂直的笛卡尔坐标系被称为空间笛卡尔直角坐标系,否则被称为空间笛卡尔斜角坐标系。

  笛卡尔坐标,它表示了点在空间中的位置,但却和直角坐标有区别,两种坐标可以相互转换。举个例子:某个点的笛卡尔坐标是493,454, 967,那它的X轴坐标就是4+9+3=16,Y轴坐标是4+5+4=13,Z轴坐标是9+6+7=22,因此这个点的直角坐标是(16,13, 22),坐标值不可能为负数(因为三个自然数相加无法成为负数)。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值