引言:微积分的核心工具
一元函数微分学是积分学、微分方程等后续内容的基础,更是建立数学思维的关键。本文系统梳理11大核心考点,助你高效通关考研数学一!
考点一:导数的定义
1️⃣ 一个点的导数
f
′
(
x
0
)
=
lim
x
→
x
0
f
(
x
)
−
f
(
x
0
)
x
−
x
0
f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}
f′(x0)=x→x0limx−x0f(x)−f(x0)
应用场景:直接求导或通过变形构造导数定义。
2️⃣ 已知导函数求极限
方法:利用拉格朗日中值定理(Lagrange中值定理)
f
(
x
)
−
f
(
x
0
)
=
f
′
(
ξ
)
(
x
−
x
0
)
,
ξ
∈
(
x
0
,
x
)
f(x) - f(x_0) = f'(\xi)(x - x_0),\ \xi \in (x_0, x)
f(x)−f(x0)=f′(ξ)(x−x0), ξ∈(x0,x)
3️⃣ 已知极限求导数
步骤:
- 将极限式变形为导数定义形式
- 结合四则运算或等价无穷小替换
示例:
已知 lim x → 0 e x − 1 − a x x 2 = b \lim_{x \to 0} \frac{e^x - 1 - ax}{x^2} = b limx→0x2ex−1−ax=b,求 a , b a, b a,b
解:展开 e x = 1 + x + x 2 2 + o ( x 2 ) e^x = 1 + x + \frac{x^2}{2} + o(x^2) ex=1+x+2x2+o(x2),对比系数得 a = 1 , b = 1 2 a=1,\ b=\frac{1}{2} a=1, b=21。
4️⃣ 不可导点的判断
(1) 绝对值函数型
F
(
x
)
=
∣
x
−
x
0
∣
g
(
x
)
F(x) = |x - x_0|g(x)
F(x)=∣x−x0∣g(x)
可导充要条件:
lim
x
→
x
0
g
(
x
)
=
0
\lim_{x \to x_0} g(x) = 0
limx→x0g(x)=0
反例:
F
(
x
)
=
∣
x
∣
sin
1
x
F(x) = |x| \sin\frac{1}{x}
F(x)=∣x∣sinx1 在
x
=
0
x=0
x=0 处可导(因
sin
1
x
\sin\frac{1}{x}
sinx1 有界)。
(2) 乘积函数型
F
(
x
)
=
f
(
x
)
g
(
x
)
F(x) = f(x)g(x)
F(x)=f(x)g(x)
若
f
(
x
)
f(x)
f(x) 在
x
0
x_0
x0 处连续但不可导,
g
(
x
)
g(x)
g(x) 可导,则
F
(
x
)
F(x)
F(x) 可导当且仅当
g
(
x
0
)
=
0
g(x_0)=0
g(x0)=0。
考点二:导数的几何意义
1️⃣ 切线方程
y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y - y_0 = f'(x_0)(x - x_0) y−y0=f′(x0)(x−x0)
2️⃣ 法线方程
y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) ( f ′ ( x 0 ) e q 0 ) y - y_0 = -\frac{1}{f'(x_0)}(x - x_0) \quad (f'(x_0) eq 0) y−y0=−f′(x0)1(x−x0)(f′(x0)eq0)
考点三:反函数求导
(
f
−
1
)
′
(
y
)
=
1
f
′
(
x
)
,
其中
y
=
f
(
x
)
(f^{-1})'(y) = \frac{1}{f'(x)},\ \text{其中 } y = f(x)
(f−1)′(y)=f′(x)1, 其中 y=f(x)
示例:求
y
=
arcsin
x
y = \arcsin x
y=arcsinx 的导数
解:由
x
=
sin
y
x = \sin y
x=siny,得
d
x
d
y
=
cos
y
\frac{dx}{dy} = \cos y
dydx=cosy,故
d
y
d
x
=
1
cos
y
=
1
1
−
x
2
\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1-x^2}}
dxdy=cosy1=1−x21。
考点四:隐函数求导
步骤:
- 方程两边同时对 x x x 求导
- 解出
d
y
d
x
\frac{dy}{dx}
dxdy
示例:
对 x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1 求导,得 2 x + 2 y y ′ = 0 ⇒ y ′ = − x y 2x + 2y y' = 0 \Rightarrow y' = -\frac{x}{y} 2x+2yy′=0⇒y′=−yx。
考点五:参数方程求导
1️⃣ 一阶导数
d y d x = d y d t d x d t \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} dxdy=dtdxdtdy
2️⃣ 二阶导数
d 2 y d x 2 = d d x ( d y d x ) = d d t ( d y d x ) d x d t \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} dx2d2y=dxd(dxdy)=dtdxdtd(dxdy)
考点六:高阶导数
1️⃣ 找规律
示例:求
y
=
e
a
x
y = e^{ax}
y=eax 的
n
n
n 阶导数
解:
y
(
n
)
=
a
n
e
a
x
y^{(n)} = a^n e^{ax}
y(n)=aneax。
2️⃣ 莱布尼兹公式
(
u
v
)
(
n
)
=
∑
k
=
0
n
C
n
k
u
(
k
)
v
(
n
−
k
)
(uv)^{(n)} = \sum_{k=0}^n C_n^k u^{(k)} v^{(n-k)}
(uv)(n)=k=0∑nCnku(k)v(n−k)
应用:适用于多项式与指数函数、三角函数的乘积。
3️⃣ 泰勒公式
f
(
x
)
=
∑
n
=
0
∞
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
f(x) = \sum_{n=0}^\infty \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n
f(x)=n=0∑∞n!f(n)(x0)(x−x0)n
关键点:
- x 0 = 0 x_0 = 0 x0=0 时为麦克劳林公式
- 通过泰勒展开式求高阶导数(如 f ( n ) ( 0 ) = n ! a n f^{(n)}(0) = n! a_n f(n)(0)=n!an)。
考点七:导数应用
1️⃣ 单调性与凹凸性
性质 | 条件 | 结论 |
---|---|---|
单调递增 | f ′ ( x ) > 0 f'(x) > 0 f′(x)>0 | 函数单调上升 |
单调递减 | f ′ ( x ) < 0 f'(x) < 0 f′(x)<0 | 函数单调下降 |
凹函数 | f ′ ′ ( x ) > 0 f''(x) > 0 f′′(x)>0 | 图像上任意两点连线在图像下方 |
凸函数 | f ′ ′ ( x ) < 0 f''(x) < 0 f′′(x)<0 | 图像上任意两点连线在图像上方 |
2️⃣ 极值点与最值
(1) 极值判定
- 必要条件: f ′ ( x 0 ) = 0 f'(x_0) = 0 f′(x0)=0 或 f ′ ( x 0 ) f'(x_0) f′(x0) 不存在
- 充分条件:
- 一阶导数变号法: f ′ ( x ) f'(x) f′(x) 在 x 0 x_0 x0 两侧异号
- 二阶导数法: f ′ ′ ( x 0 ) ≠ 0 ; f ′ ′ ( x 0 ) > 0 ⇒ f''(x_0) ≠ 0;f''(x_0) > 0 \Rightarrow f′′(x0)=0;f′′(x0)>0⇒ 极小值; f ′ ′ ( x 0 ) < 0 ⇒ f''(x_0) < 0 \Rightarrow f′′(x0)<0⇒ 极大值
(2) 最值求解
- 闭区间:比较端点值与极值
- 开区间:需验证极限是否存在最值
(3) 拐点
- 必要条件: f ′ ′ ( x 0 ) = 0 f''(x_0) = 0 f′′(x0)=0 或不存在
- 充分条件:
- 二阶导数变号法: f ′ ′ ( x ) f''(x) f′′(x) 在 x 0 x_0 x0 两侧异号
- 三阶导数法: f ′ ′ ′ ( x 0 ) ≠ 0 f'''(x_0) ≠ 0 f′′′(x0)=0
⚠️ 注意:极值是函数值,拐点是曲线上的点!
考点八:曲率与曲率圆
1️⃣ 曲率计算
k = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 / 2 k = \frac{|y''|}{\left(1 + y'^2\right)^{3/2}} k=(1+y′2)3/2∣y′′∣
2️⃣ 曲率半径
r = 1 k r = \frac{1}{k} r=k1
3️⃣ 曲率圆性质
- 夹在曲率圆与切线之间
- 与曲线在该点有相同的 y ′ , y ′ ′ y', y'' y′,y′′
- 曲率半径越小,曲线越弯曲
考点九:不等式证明
1️⃣ 函数不等式
步骤:
- 构造 F ( x ) = f ( x ) − g ( x ) F(x) = f(x) - g(x) F(x)=f(x)−g(x)
- 求导分析单调性
- 验证 F ( x ) min ≥ 0 F(x)_{\text{min}} \geq 0 F(x)min≥0
2️⃣ 数值不等式
方法:将数值替换为变量构造函数,转化为函数不等式。
3️⃣ 积分不等式
技巧:
- 变限积分不等式直接构造函数
- 积分不等式,把 b b b换成 x x x,构造函数证明
- 利用单调性不方便证明的,考虑积分性质、分部积分或泰勒中值定理证明
考点十:方程根问题
1️⃣ 单调性分析
步骤:
- 求导确定单调区间
- 结合零点定理证明根的存在性
2️⃣ 零点定理
常见求导公式速查表
函数类型 | 导数公式 |
---|---|
常函数 | ( C ) ′ = 0 (C)' = 0 (C)′=0 |
幂函数 | ( x α ) ′ = α x α − 1 (x^\alpha)' = \alpha x^{\alpha-1} (xα)′=αxα−1 |
指数函数 | ( a x ) ′ = a x ln a (a^x)' = a^x \ln a (ax)′=axlna |
对数函数 | ( log a x ) ′ = 1 x ln a (\log_a x)' = \frac{1}{x \ln a} (logax)′=xlna1 |
三角函数 | |
sin x \sin x sinx | cos x \cos x cosx |
cos x \cos x cosx | − sin x -\sin x −sinx |
tan x \tan x tanx | sec 2 x \sec^2 x sec2x |
cot x \cot x cotx | − csc 2 x -\csc^2 x −csc2x |
sec x \sec x secx | sec x tan x \sec x \tan x secxtanx |
csc x \csc x cscx | − csc x cot x -\csc x \cot x −cscxcotx |
反三角函数 | |
arcsin x \arcsin x arcsinx | 1 1 − x 2 \frac{1}{\sqrt{1-x^2}} 1−x21 |
arccos x \arccos x arccosx | − 1 1 − x 2 -\frac{1}{\sqrt{1-x^2}} −1−x21 |
arctan x \arctan x arctanx | 1 1 + x 2 \frac{1}{1+x^2} 1+x21 |
arccot x \operatorname{arccot} x arccotx | − 1 1 + x 2 -\frac{1}{1+x^2} −1+x21 |
考研数学一战成硕!
掌握以上考点,配合真题训练,微分学部分可轻松突破高分! 🚀
实战建议:
- 每日一练:选择2-3个考点进行专项训练
- 错题复盘:标记易错点并总结解题套路
- 公式默写:每周默写一次核心公式表
评论区留言:如果发现错误,欢迎互动交流! 💬