1.2一元函数微分学


引言:微积分的核心工具

一元函数微分学是积分学、微分方程等后续内容的基础,更是建立数学思维的关键。本文系统梳理11大核心考点,助你高效通关考研数学一!


考点一:导数的定义

1️⃣ 一个点的导数

f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} f(x0)=xx0limxx0f(x)f(x0)
应用场景:直接求导或通过变形构造导数定义。

2️⃣ 已知导函数求极限

方法:利用拉格朗日中值定理(Lagrange中值定理)
f ( x ) − f ( x 0 ) = f ′ ( ξ ) ( x − x 0 ) ,   ξ ∈ ( x 0 , x ) f(x) - f(x_0) = f'(\xi)(x - x_0),\ \xi \in (x_0, x) f(x)f(x0)=f(ξ)(xx0), ξ(x0,x)

3️⃣ 已知极限求导数

步骤

  1. 将极限式变形为导数定义形式
  2. 结合四则运算或等价无穷小替换
    示例
    已知 lim ⁡ x → 0 e x − 1 − a x x 2 = b \lim_{x \to 0} \frac{e^x - 1 - ax}{x^2} = b limx0x2ex1ax=b,求 a , b a, b a,b
    解:展开 e x = 1 + x + x 2 2 + o ( x 2 ) e^x = 1 + x + \frac{x^2}{2} + o(x^2) ex=1+x+2x2+o(x2),对比系数得 a = 1 ,   b = 1 2 a=1,\ b=\frac{1}{2} a=1, b=21

4️⃣ 不可导点的判断

(1) 绝对值函数型

F ( x ) = ∣ x − x 0 ∣ g ( x ) F(x) = |x - x_0|g(x) F(x)=xx0g(x)
可导充要条件: lim ⁡ x → x 0 g ( x ) = 0 \lim_{x \to x_0} g(x) = 0 limxx0g(x)=0
反例 F ( x ) = ∣ x ∣ sin ⁡ 1 x F(x) = |x| \sin\frac{1}{x} F(x)=xsinx1 x = 0 x=0 x=0 处可导(因 sin ⁡ 1 x \sin\frac{1}{x} sinx1 有界)。

(2) 乘积函数型

F ( x ) = f ( x ) g ( x ) F(x) = f(x)g(x) F(x)=f(x)g(x)
f ( x ) f(x) f(x) x 0 x_0 x0 处连续但不可导, g ( x ) g(x) g(x) 可导,则 F ( x ) F(x) F(x) 可导当且仅当 g ( x 0 ) = 0 g(x_0)=0 g(x0)=0


考点二:导数的几何意义

1️⃣ 切线方程

y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y - y_0 = f'(x_0)(x - x_0) yy0=f(x0)(xx0)

2️⃣ 法线方程

y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) ( f ′ ( x 0 ) e q 0 ) y - y_0 = -\frac{1}{f'(x_0)}(x - x_0) \quad (f'(x_0) eq 0) yy0=f(x0)1(xx0)(f(x0)eq0)


考点三:反函数求导

( f − 1 ) ′ ( y ) = 1 f ′ ( x ) ,  其中  y = f ( x ) (f^{-1})'(y) = \frac{1}{f'(x)},\ \text{其中 } y = f(x) (f1)(y)=f(x)1, 其中 y=f(x)
示例:求 y = arcsin ⁡ x y = \arcsin x y=arcsinx 的导数
解:由 x = sin ⁡ y x = \sin y x=siny,得 d x d y = cos ⁡ y \frac{dx}{dy} = \cos y dydx=cosy,故 d y d x = 1 cos ⁡ y = 1 1 − x 2 \frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1-x^2}} dxdy=cosy1=1x2 1


考点四:隐函数求导

步骤

  1. 方程两边同时对 x x x 求导
  2. 解出 d y d x \frac{dy}{dx} dxdy
    示例
    x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1 求导,得 2 x + 2 y y ′ = 0 ⇒ y ′ = − x y 2x + 2y y' = 0 \Rightarrow y' = -\frac{x}{y} 2x+2yy=0y=yx

考点五:参数方程求导

1️⃣ 一阶导数

d y d x = d y d t d x d t \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} dxdy=dtdxdtdy

2️⃣ 二阶导数

d 2 y d x 2 = d d x ( d y d x ) = d d t ( d y d x ) d x d t \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} dx2d2y=dxd(dxdy)=dtdxdtd(dxdy)


考点六:高阶导数

1️⃣ 找规律

示例:求 y = e a x y = e^{ax} y=eax n n n 阶导数
解: y ( n ) = a n e a x y^{(n)} = a^n e^{ax} y(n)=aneax

2️⃣ 莱布尼兹公式

( u v ) ( n ) = ∑ k = 0 n C n k u ( k ) v ( n − k ) (uv)^{(n)} = \sum_{k=0}^n C_n^k u^{(k)} v^{(n-k)} (uv)(n)=k=0nCnku(k)v(nk)
应用:适用于多项式与指数函数、三角函数的乘积。

3️⃣ 泰勒公式

f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n f(x) = \sum_{n=0}^\infty \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n f(x)=n=0n!f(n)(x0)(xx0)n
关键点

  • x 0 = 0 x_0 = 0 x0=0 时为麦克劳林公式
  • 通过泰勒展开式求高阶导数(如 f ( n ) ( 0 ) = n ! a n f^{(n)}(0) = n! a_n f(n)(0)=n!an)。

考点七:导数应用

1️⃣ 单调性与凹凸性

性质条件结论
单调递增 f ′ ( x ) > 0 f'(x) > 0 f(x)>0函数单调上升
单调递减 f ′ ( x ) < 0 f'(x) < 0 f(x)<0函数单调下降
凹函数 f ′ ′ ( x ) > 0 f''(x) > 0 f′′(x)>0图像上任意两点连线在图像下方
凸函数 f ′ ′ ( x ) < 0 f''(x) < 0 f′′(x)<0图像上任意两点连线在图像上方

2️⃣ 极值点与最值

(1) 极值判定
  • 必要条件 f ′ ( x 0 ) = 0 f'(x_0) = 0 f(x0)=0 f ′ ( x 0 ) f'(x_0) f(x0) 不存在
  • 充分条件
    • 一阶导数变号法: f ′ ( x ) f'(x) f(x) x 0 x_0 x0 两侧异号
    • 二阶导数法: f ′ ′ ( x 0 ) ≠ 0 ; f ′ ′ ( x 0 ) > 0 ⇒ f''(x_0) ≠ 0;f''(x_0) > 0 \Rightarrow f′′(x0)=0f′′(x0)>0 极小值; f ′ ′ ( x 0 ) < 0 ⇒ f''(x_0) < 0 \Rightarrow f′′(x0)<0 极大值
(2) 最值求解
  • 闭区间:比较端点值与极值
  • 开区间:需验证极限是否存在最值
(3) 拐点
  • 必要条件 f ′ ′ ( x 0 ) = 0 f''(x_0) = 0 f′′(x0)=0 或不存在
  • 充分条件
    • 二阶导数变号法: f ′ ′ ( x ) f''(x) f′′(x) x 0 x_0 x0 两侧异号
    • 三阶导数法: f ′ ′ ′ ( x 0 ) ≠ 0 f'''(x_0) ≠ 0 f′′′(x0)=0

⚠️ 注意:极值是函数值,拐点是曲线上的点!


考点八:曲率与曲率圆

在这里插入图片描述

1️⃣ 曲率计算

k = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 / 2 k = \frac{|y''|}{\left(1 + y'^2\right)^{3/2}} k=(1+y′2)3/2y′′

2️⃣ 曲率半径

r = 1 k r = \frac{1}{k} r=k1

3️⃣ 曲率圆性质

  • 夹在曲率圆与切线之间
  • 与曲线在该点有相同的 y ′ , y ′ ′ y', y'' y,y′′
  • 曲率半径越小,曲线越弯曲

考点九:不等式证明

1️⃣ 函数不等式

步骤

  1. 构造 F ( x ) = f ( x ) − g ( x ) F(x) = f(x) - g(x) F(x)=f(x)g(x)
  2. 求导分析单调性
  3. 验证 F ( x ) min ≥ 0 F(x)_{\text{min}} \geq 0 F(x)min0

2️⃣ 数值不等式

方法:将数值替换为变量构造函数,转化为函数不等式。

3️⃣ 积分不等式

技巧

  • 变限积分不等式直接构造函数
  • 积分不等式,把 b b b换成 x x x,构造函数证明
  • 利用单调性不方便证明的,考虑积分性质、分部积分或泰勒中值定理证明

考点十:方程根问题

1️⃣ 单调性分析

步骤

  1. 求导确定单调区间
  2. 结合零点定理证明根的存在性

2️⃣ 零点定理


常见求导公式速查表

函数类型导数公式
常函数 ( C ) ′ = 0 (C)' = 0 (C)=0
幂函数 ( x α ) ′ = α x α − 1 (x^\alpha)' = \alpha x^{\alpha-1} (xα)=αxα1
指数函数 ( a x ) ′ = a x ln ⁡ a (a^x)' = a^x \ln a (ax)=axlna
对数函数 ( log ⁡ a x ) ′ = 1 x ln ⁡ a (\log_a x)' = \frac{1}{x \ln a} (logax)=xlna1
三角函数
sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx
cos ⁡ x \cos x cosx − sin ⁡ x -\sin x sinx
tan ⁡ x \tan x tanx sec ⁡ 2 x \sec^2 x sec2x
cot ⁡ x \cot x cotx − csc ⁡ 2 x -\csc^2 x csc2x
sec ⁡ x \sec x secx sec ⁡ x tan ⁡ x \sec x \tan x secxtanx
csc ⁡ x \csc x cscx − csc ⁡ x cot ⁡ x -\csc x \cot x cscxcotx
反三角函数
arcsin ⁡ x \arcsin x arcsinx 1 1 − x 2 \frac{1}{\sqrt{1-x^2}} 1x2 1
arccos ⁡ x \arccos x arccosx − 1 1 − x 2 -\frac{1}{\sqrt{1-x^2}} 1x2 1
arctan ⁡ x \arctan x arctanx 1 1 + x 2 \frac{1}{1+x^2} 1+x21
arccot ⁡ x \operatorname{arccot} x arccotx − 1 1 + x 2 -\frac{1}{1+x^2} 1+x21

考研数学一战成硕!

掌握以上考点,配合真题训练,微分学部分可轻松突破高分! 🚀
实战建议

  1. 每日一练:选择2-3个考点进行专项训练
  2. 错题复盘:标记易错点并总结解题套路
  3. 公式默写:每周默写一次核心公式表

评论区留言:如果发现错误,欢迎互动交流! 💬

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值