1.2 一元函数微分学

第一章 数学分析

全文均为手敲,如果发现有误,请于评论区交流讨论留言,作者会及时修改

1.2 一元函数微分学

  1. 函数可导

    函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处可导,当且仅当

    f ′ ( x 0 ) = lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 ) h 存在 , 或当且仅当 f ′ ( x 0 − ) = f ′ ( x 0 + ) f'(x_0)=\lim_{h\to0}\frac{f(x_0+h)-f(x_0)}h存在,或当且仅当 f'(x_0^-)=f'(x_0^+) f(x0)=h0limhf(x0+h)f(x0)存在,或当且仅当f(x0)=f(x0+)

    一元函数可导一定连续,连续不一定可导

  2. 可导函数的单调性

    ( 1 ) f ( x ) 单调递增 ⇔ f ’ ( x ) ≥ 0 ( 2 ) f ( x ) 严格单调递增 ⇔ f ′ ( x ) 除有限个点为零之外 , 其余点 f ′ ( x ) > 0 \begin{aligned} &(1)f(x)单调递增\Leftrightarrow f’(x)\ge 0\\ &(2)f(x)严格单调递增\Leftrightarrow f'(x)除有限个点为零之外,其余点f'(x)>0 \end{aligned} (1)f(x)单调递增f(x)0(2)f(x)严格单调递增f(x)除有限个点为零之外,其余点f(x)>0

  3. 可导函数的驻点

    f ′ ( x ) = 0 f'(x)=0 f(x)=0,则称 x x x为函数 f ( x ) f(x) f(x)的驻点

  4. 可导函数极值的第一充分条件

    函数 f ( x ) f(x) f(x)在包含 x 0 x_0 x0某一邻域内连续,且存在一个左邻域内导函数非负、右邻域内导函数非正,则 x 0 x_0 x0为函数的极大值点。若左邻域内导函数非正、右邻域内导函数非负,则 x 0 x_0 x0为函数的极小值点。

  5. 可导函数极值的第二充分条件

    x 0 x_0 x0 f ( x ) f(x) f(x)的一个驻点,且 f ′ ′ ( x 0 ) < 0 f''(x_0)<0 f′′(x0)<0,则 x 0 x_0 x0为函数的极大值点。若 f ′ ′ ( x 0 ) > 0 f''(x_0)>0 f′′(x0)>0,则 x 0 x_0 x0为函数的极小值点。

  6. 凸函数

    设函数 f ( x ) f(x) f(x)在区间 I I I上有定义,若 I I I中任意两点 a , b a,b a,b以及任意 λ ∈ ( 0 , 1 ) \lambda\in(0,1) λ(0,1),都有

    f ( ( 1 − λ ) a + λ b ) ≤ ( 1 − λ ) f ( a ) + λ f ( b ) f((1-\lambda)a+\lambda b)\le(1-\lambda)f(a)+\lambda f(b) f((1λ)a+λb)(1λ)f(a)+λf(b)

    则称 f ( x ) f(x) f(x) I I I上的凸函数。若改变上述不等号的方向,则定义凹函数。

    f ( x ) f(x) f(x) I I I上二阶可导,则 f ( x ) f(x) f(x)是凸函数 ⇔ ∀ x ∈ I , f ′ ′ ( x ) ≥ 0 \Leftrightarrow\forall x\in I, f''(x)\ge0 xI,f′′(x)0

  7. 二阶可导函数的拐点

    若函数 f ( x ) f(x) f(x) x x x的两侧分布严格凸和严格凹,且 f ′ ′ ( x ) = 0 f''(x)=0 f′′(x)=0,则称 x x x为函数 f ( x ) f(x) f(x)的拐点

  8. F e r m a t Fermat Fermat引理

    若函数在极值点处可导,则其导数值为零。

  9. R o l e Role Role定理

    若函数 f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)C[a,b] ( a , b ) (a,b) (a,b)可导, f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),则

    ∃ ξ ∈ ( a , b ) , s . t . f ′ ( ξ ) = 0 \exist\xi\in(a,b),s.t.f'(\xi)=0 ξ(a,b),s.t.f(ξ)=0

  10. L a g r a n g e Lagrange Lagrange中值定理

    若函数 f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)C[a,b] ( a , b ) (a,b) (a,b)可导,则

    ∃ ξ ∈ ( a , b ) , s . t . f ′ ( ξ ) = f ( b ) − f ( a ) b − a \exist\xi\in(a,b),s.t.f'(\xi)=\frac{f(b)-f(a)}{b-a} ξ(a,b),s.t.f(ξ)=baf(b)f(a)

  11. C a u c h y Cauchy Cauchy中值定理

    f ( x ) , g ( x ) ∈ C [ a , b ] f(x),g(x)\in C[a,b] f(x),g(x)C[a,b] ( a , b ) (a,b) (a,b)可导, ∀ x ∈ ( a , b ) , g ′ ( x ) ≠ 0 \forall x\in(a,b),g'(x)\ne0 x(a,b),g(x)=0,则

    ∃ ξ ∈ ( a , b ) , s . t . f ′ ( ξ ) g ′ ( ξ ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \exist\xi\in(a,b),s.t.\frac{f'(\xi)}{g'(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)} ξ(a,b),s.t.g(ξ)f(ξ)=g(b)g(a)f(b)f(a)

  12. J e n s e n Jensen Jensen不等式

    若函数 f ( x ) f(x) f(x) I I I上是凸函数,取 ∀ x 1 , ⋯   , x n ∈ I , λ 1 , ⋯   , λ ∈ [ 0 , 1 ] \forall x_1,\cdots,x_n\in I,\lambda_1,\cdots,\lambda\in[0,1] x1,,xnI,λ1,,λ[0,1],满足 ∑ λ k = 1 \sum \lambda_k=1 λk=1,则有

    f ( ∑ k = 1 n λ k x k ) ≤ ∑ k = 1 n λ k f ( x k ) f(\sum_{k=1}^n\lambda_k x_k)\le\sum_{k=1}^n\lambda_kf(x_k) f(k=1nλkxk)k=1nλkf(xk)

  13. 常用导数公式(极其简单的函数不再介绍)

    一阶求导公式

    ( 1 ) ( tan ⁡ x ) ′ = sec ⁡ 2 x ( 2 ) ( cot ⁡ x ) ′ = − csc ⁡ 2 x ( 3 ) ( sec ⁡ x ) ′ = tan ⁡ x sec ⁡ x ( 4 ) ( csc ⁡ x ) ′ = − cot ⁡ x csc ⁡ x ( 5 ) ( arcsin ⁡ x ) ′ = 1 1 − x 2 ( 6 ) ( arccos ⁡ x ) ′ = − 1 1 − x 2 ( 7 ) ( arctan ⁡ x ) ′ = 1 1 + x 2 ( 8 ) ( a r c c o t x ) ′ = − 1 1 + x 2 ( 9 ) ( a x ) ′ = a x ln ⁡ a ( 10 ) ( log ⁡ a x ) ′ = 1 x ln ⁡ a \begin{aligned} &(1)(\tan x)'=\sec^2x\\ &(2)(\cot x)'=-\csc^2x\\ &(3)(\sec x)'=\tan x\sec x\\ &(4)(\csc x)'=-\cot x\csc x\\ &(5)(\arcsin x)'=\frac 1{\sqrt{1-x^2}}\\ &(6)(\arccos x)'=-\frac 1{\sqrt{1-x^2}}\\ &(7)(\arctan x)'=\frac 1{1+x^2}\\ &(8)({\rm{arccot}}x)'=-\frac 1{1+x^2}\\ &(9)(a^x)'=a^x\ln a\\ &(10)(\log_ax)'=\frac 1{x\ln a} \end{aligned} (1)(tanx)=sec2x(2)(cotx)=csc2x(3)(secx)=tanxsecx(4)(cscx)=cotxcscx(5)(arcsinx)=1x2 1(6)(arccosx)=1x2 1(7)(arctanx)=1+x21(8)(arccotx)=1+x21(9)(ax)=axlna(10)(logax)=xlna1

    高阶求导公式

    ( 1 ) ( x α ) ( n ) = α ( α − 1 ) ⋯ ( α − n + 1 ) x α − n ( 2 ) ( e λ x ) ( n ) = λ n e λ x ( 3 ) ( ln ⁡ x ) ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! x n ( 4 ) ( 1 x + a ) ( n ) = ( − 1 ) n n ! ( x + a ) n + 1 ( 5 ) ( sin ⁡ k x ) ( n ) = k n sin ⁡ ( k x + n 2 π ) ( 6 ) ( cos ⁡ k x ) ( n ) = k n cos ⁡ ( k x + n 2 π ) \begin{aligned} &(1)(x^\alpha)^{(n)}=\alpha(\alpha-1)\cdots(\alpha-n+1)x^{\alpha-n}\\ &(2)(e^{\lambda x})^{(n)}=\lambda^ne^{\lambda x}\\ &(3)(\ln x)^{(n)}=(-1)^{n-1}\frac{(n-1)!}{x^n}\\ &(4)(\frac 1{x+a})^{(n)}=(-1)^n\frac{n!}{(x+a)^{n+1}}\\ &(5)(\sin kx)^{(n)}=k^n\sin(kx+\frac n2\pi)\\ &(6)(\cos kx)^{(n)}=k^n\cos(kx+\frac n2\pi) \end{aligned} (1)(xα)(n)=α(α1)(αn+1)xαn(2)(eλx)(n)=λneλx(3)(lnx)(n)=(1)n1xn(n1)!(4)(x+a1)(n)=(1)n(x+a)n+1n!(5)(sinkx)(n)=knsin(kx+2nπ)(6)(coskx)(n)=kncos(kx+2nπ)

  14. L e i b n i z Leibniz Leibniz求导公式

    [ f ( x ) g ( x ) ] ( n ) = ∑ k = 0 n C n k f ( n − k ) ( x ) g ( k ) ( x ) [f(x)g(x)]^{(n)}=\sum_{k=0}^nC_n^kf^{(n-k)}(x)g^{(k)}(x) [f(x)g(x)](n)=k=0nCnkf(nk)(x)g(k)(x)

  15. P e a n o Peano Peano余项的 T a y l o r Taylor Taylor公式

    f ( x ) f(x) f(x) x 0 x_0 x0处具有 n n n阶导数,则在 x 0 x_0 x0附近有

    f ( x ) = ∑ k = 0 n f k ( x 0 ) k ! ( x − x 0 ) k + o ( ( x − x 0 ) k ) f(x)=\sum_{k=0}^n\frac{f^{k}(x_0)}{k!}(x-x_0)^k+o((x-x_0)^k) f(x)=k=0nk!fk(x0)(xx0)k+o((xx0)k)

  16. M a c l a u r i n Maclaurin Maclaurin公式

    P e a n o Peano Peano余项的 T a y l o r Taylor Taylor公式中 x 0 = 0 x_0=0 x0=0的特殊形式

  17. L a g r a n g e Lagrange Lagrange余项的 T a y l o r Taylor Taylor公式

    f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]具有连续 n n n阶导数,在 ( a , b ) (a,b) (a,b) n + 1 n+1 n+1阶导数,则 ∀ x , x 0 ∈ [ a , b ] \forall x,x_0\in[a,b] x,x0[a,b] ∃ ξ ∈ ( x , x 0 ) \exists\xi\in(x,x_0) ξ(x,x0) ( x 0 , x ) (x_0,x) (x0,x),有

    f ( x ) = ∑ k = 0 n f k ( x 0 ) k ! ( x − x 0 ) k + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 f(x)=\sum_{k=0}^n\frac{f^{k}(x_0)}{k!}(x-x_0)^k+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} f(x)=k=0nk!fk(x0)(xx0)k+(n+1)!f(n+1)(ξ)(xx0)n+1

  18. 常用函数的 T a y l o r Taylor Taylor展开

    需要考虑收敛域,参照 1.6 1.6 1.6级数部分

  19. T a y l o r Taylor Taylor展开式的另一种构造方法

    f ( x ± h ) = ∑ k = 0 n f k ( x ) k ! ( ± h ) k + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( ± h ) n + 1 f(x\pm h)=\sum_{k=0}^n\frac{f^{k}(x)}{k!}(\pm h)^k+\frac{f^{(n+1)}(\xi)}{(n+1)!}(\pm h)^{n+1} f(x±h)=k=0nk!fk(x)(±h)k+(n+1)!f(n+1)(ξ)(±h)n+1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值