第四讲 一元函数微分学的计算
文章目录
1.基本工具
1.1 基本求导公式
给出基本求导公式(需记忆):
1.2 四则运算
和差积商导数的四则运算
2.各种类型导数的计算
2.1 复合函数
复合函数,链式法则,层层求导
2.2 分段函数
2.3 反函数
反函数求导要记忆公式
x’y=1/y’x
x’‘yy=-y’'xx/(y’x)3
注意定义域别忘了修改
2.4 隐函数
隐函数就是y=y(x)这种形式的函数
两边一起做微分,把y看成x的一种中间变量,得到dy/dx的等式
2.5 参数方程
参数方程的求导,我们就注意不需要记忆公式,只需要对相应的x和y求导即可,计算二阶导的时候,把一阶导算出来后,再对一阶导求导计算二阶导
但是参数方程的计算公式有需要记忆的情况:就是当参数方程中的某个方程是隐函数的情况下,用公式计算会更加迅速,给出参数方程的计算公式(非重点):
y
′
′
(
t
)
x
′
(
t
)
−
x
′
′
(
t
)
y
′
(
t
)
{
x
′
(
t
)
}
3
\frac{y''\left(t\right)x'\left(t\right) - x''\left(t\right)y'\left(t\right)}{\{x'\left(t)\}^{3}\right.}\:
{x′(t)}3y′′(t)x′(t)−x′′(t)y′(t)
2.6 多项相乘相除开平方
对数求导法,考虑两边同时取对数,变成加减法的形式
2.7 幂指函数
以e为底进行计算
3.高阶导数(难点)
关于高阶导数的计算问题,单独撰写了一篇文章,系统的解决考研数学中的高阶导数计算问题
高等数学重难点突破:高阶导数的计算
4.微分的计算
待整理两道关于微分计算的题目
660中的 39题和145题,有待于进一步整理归纳