caffe修改DataLayer来实现多标签多任务——车辆属性识别

本文介绍了如何修改Caffe的DataLayer来处理多标签数据集,以进行车辆属性识别任务。作者提供了数据集来源、lmdb制作过程、修改Caffe源码的步骤,以及训练和测试网络的流程。文章附带了必要的代码和模型资源。
摘要由CSDN通过智能技术生成

初步接触多标签多任务训练的时候,网上能找到的资料文献几乎全看了,不禁感叹一下,百家争鸣百花齐放五花八门,对我来说真的是费了好大劲来缕清思路,没有一篇是可以完全照着能复现出来的,要么缺少数据集,要么缺少代码,要么步骤没有讲清楚,总之是参阅了很多的网友的智慧,终于跑通了自己的。

参考过的资料我尽量都贴在文章后面,以表敬意。

网上好几种思路来修改caffe,使之能够处理多标签数据集,我这里只跑通了修改caffe DataLayer 相关源码,修改的地方貌似较多,对之前的兼容性也还没测试,所之前的caffe项目建议备份一个。


一、数据集

1. 车辆属性:品牌(奥迪、宝马、奔驰)、车型(suv、小轿车)

参考这篇文章的汽车属性识别,https://blog.csdn.net/u014696921/article/details/70245141,不过它是windows vs工程,所以只是借用了它这里提供的数据集:http://download.csdn.net/detail/mr_curry/9742578 ,下载要好多积分啊,不过还是非常感谢博主提供的数据集。

我将该数据稍微改了一下结构目录,方便后续训练,修改后放在这里了:

链接:https://pan.baidu.com/s/1naw84G5RI8OkEj_sCl5NQw  
提取码:j5kx 
 

数据集下载后放在这个路径下,car_multilabes文件夹是我自己新建的:

train.txt的内容:文件名相对路径+label1+label2,这个标注文件的制作我没找到好的工具,难道要自己写个小程序用来标注多标签样本吗,谁知道的话,麻

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
目标识别是计算机视觉一个重要的研究领域,由此延伸出的车辆型号识别具有重 要的实际应用价值,特别是在当今交通状况复杂的大城市,智能交通系统成为发展趋 势,这离不开对车辆型号进行识别和分类的工作,本文围绕如何利用计算机视觉的方 法进行车辆型号的识别和分类展开了一系列研究: 本文对当前的目标识别和分类的特征和算法做了总结和归纳。分析比较了作为图 像特征描述常见的特征算子,总结归纳了他们的提取方法、特征性能以及相互之间的 关联。另外,介绍了在目标识别工作中常用的分类方法,阐述了他们各自的原理和工作 方法。研究了深度神经网络的理论依据,分析比较了深度神经网络不同的特征学习方 法,以及卷积神经网络的训练方法。分析比较不同特征学习方法的特点选取 k-means 作为本文使用的特征学习方法,利用卷积神经网络结构搭建深度学习模型,进行车辆 车型识别工作。 本文为了测试基于深度学习的车辆型号分类算法的性能在 30 个不同型号共 7158 张图片上进行实验;并在相同数据上利用改进了的 SIFT 特征匹配的算法进行对比实验; 进过实验测试,深度学习方法在进行车型分类的实验中取得 94%的正确率,并在与 SIFT 匹配实验结果对比后进一步证实:深度学习的方法能够应用在车辆型号识别领域
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值