【运筹学】线性规划数学模型 ( 求解基矩阵示例 | 矩阵的可逆性 | 线性规划表示为 基矩阵 基向量 非基矩阵 非基向量 形式 )





一、求解基矩阵示例



求如下线性规划的基矩阵 :


m a x Z = 4 x 1 − 2 x 2 − x 3 { 5 x 1 + x 2 − x 3 + x 4 = 3 − 10 x 1 + 6 x 2 + 2 x 3 + x 5 = 2 x j ≥ 0 ( i = 1 , 2 , 3 , 4 , 5 ) \begin{array}{lcl} max Z = 4x_1 - 2x_2 - x_3 \\ \\ \begin{cases} 5 x_1 + x_2 - x_3 + x_4 = 3 \\\\ -10x_1 + 6x_2 + 2x_3 + x_5 = 2 \\ \\x_j \geq 0 & (i = 1 , 2 , 3, 4,5) \end{cases}\end{array} maxZ=4x12x2x35x1+x2x3+x4=310x1+6x2+2x3+x5=2xj0(i=1,2,3,4,5)



求解过程 :


系数矩阵 : 上述线性规划的约束方程的系数矩阵为 [ 5 1 − 1 1 0 − 10 6 2 0 1 ] \begin{bmatrix} &5 & 1 & -1 & 1 & 0 & \\\\ & -10 & 6 & 2 & 0 & 1 & \end{bmatrix} 51016121001 , 这是一个 2 × 5 2 \times 5 2×5 矩阵 , 2 2 2 行 , 5 5 5 列 , 有 2 2 2 个约束方程 , 5 5 5 个变量 ;


2 2 2 阶的子矩阵有 C ( 5 , 2 ) C (5 , 2) C(5,2) , 这是组合计算公式 ; 单纯的从 5 5 5 个向量中选出 2 2 2 个向量 , 不用进行排列 ;

C ( 5 , 2 ) = P ( 5 , 2 ) 2 ! = 5 ! 3 ! × 2 ! = 5 × 4 × 3 × 2 × 1 3 × 2 × 2 = 10 \begin{array}{lcl}C (5 , 2) &=& \dfrac{P(5, 2)}{2!} \\\\ &=& \dfrac{5!}{3! \times 2!} \\\\ &= & \dfrac{5 \times 4 \times 3 \times 2 \times 1}{3\times 2 \times 2}\\\\ &=& 10 \end{array} C(5,2)====2!P(5,2)3!×2!5!3×2×25×4×3×2×110


从上述 10 个 2 2 2 阶方阵中 , 将基矩阵挑选出来 ;


基矩阵的条件 : 矩阵是可逆的 ;


其中有一个子矩阵 [ 5 − 1 − 10 2 ] \begin{bmatrix} &5 & -1 & \\\\ & -10 & 2 & \end{bmatrix} 51012 该矩阵是成比例的 , 不是基矩阵 ;


10 10 10 2 2 2 阶子矩阵中 , 1 1 1 个不是可逆矩阵 , 其余 9 9 9 个都是可逆矩阵 , 因此下面的 9 9 9 个矩阵是基矩阵 :


B 1 = [ 5 1 − 10 6 ] B_1 = \begin{bmatrix} &5 & 1 & \\\\ & -10 & 6 & \end{bmatrix} B1=51016 , B 2 = [ 1 − 1 6 2 ] B_2 = \begin{bmatrix} &1 & -1 & \\\\ & 6 & 2 & \end{bmatrix} B2=1612 , B 3 = [ 5 0 − 10 1 ] B_3 = \begin{bmatrix} &5 & 0 & \\\\ & -10 & 1 & \end{bmatrix} B3=51001 ,

B 4 = [ 1 1 6 0 ] B_4 = \begin{bmatrix} &1 & 1 & \\\\ & 6 & 0 & \end{bmatrix} B4=1610 , B 5 = [ 5 1 − 10 0 ] B_5 = \begin{bmatrix} &5 & 1 & \\\\ & -10 & 0 & \end{bmatrix} B5=51010 , B 6 = [ − 1 0 2 1 ] B_6 = \begin{bmatrix} &-1 & 0 & \\\\ & 2 & 1 & \end{bmatrix} B6=1201 ,

B 7 = [ − 1 1 2 0 ] B_7 = \begin{bmatrix} &-1 & 1 & \\\\ & 2 & 0 & \end{bmatrix} B7=1210 , B 8 = [ 1 10 6 1 ] B_8 = \begin{bmatrix} &1 & 10 & \\\\ & 6 & 1 & \end{bmatrix} B8=16101 , B 9 = [ 1 0 0 1 ] B_9 = \begin{bmatrix} &1 & 0 & \\\\ & 0 & 1 & \end{bmatrix} B9=1001 ;





二、矩阵的可逆性分析



矩阵的可逆性分析 :


矩阵可逆 :

  • 可逆前提 : 分析矩阵是否可逆 , 前提是该矩阵是一个方阵 ;
  • 行列式为 0 0 0 : 求方阵 B B B 的行列式 , 只要该行列式不为 0 0 0 , 该矩阵就是可逆的 ;

行列式计算 : 使用对角线法 , 或行列余子式进行计算 , 参考以下链接 :



2 2 2 阶方阵行列计算方法 : 本篇博客中涉及到 2 2 2 阶方阵的行列式 , 其行列式就是对角线乘积相减 ;


如上述矩阵 [ 5 − 1 − 10 2 ] \begin{bmatrix} &5 & -1 & \\\\ & -10 & 2 & \end{bmatrix} 51012 , 其对角线乘积相减 :

D = ∣ 5 − 1 − 10 2 ∣ = ( 5 × 2 ) − ( − 1 × − 10 ) = = 10 − 10 = 0 \begin{array}{lcl} D &=& \begin{vmatrix} 5 & -1 \\ -10 & 2 \\ \end{vmatrix}\\\\ &=& (5 \times 2) - ( -1 \times -10 ) \\\\ &=& = 10 - 10\\\\ & = & 0 \end{array} D====51012(5×2)(1×10)=10100

该矩阵行列式计算结果为 0 0 0 , 不是可逆矩阵 ;


可逆矩阵都可以写成阶梯型矩阵 ; 进行矩阵变换后 , 就可以变成阶梯矩阵 ;





三、基矩阵、基向量、基变量



上述 9 9 9 个矩阵都是可逆矩阵 , 都可以作为基矩阵 , 当选中一个基矩阵时 , 其对应的列向量就是基向量 , 对应的变量 , 就是基变量 , 剩余的变量是非基变量 ;


选中 B 1 = [ 5 1 − 10 6 ] B_1 = \begin{bmatrix} &5 & 1 & \\\\ & -10 & 6 & \end{bmatrix} B1=51016 作为线性规划的基矩阵 , 该基矩阵对应的基向量是 [ 5 − 10 ] \begin{bmatrix} &5 & \\\\ & -10 & \end{bmatrix} 510 [ 1 6 ] \begin{bmatrix} & 1 & \\\\ & 6 & \end{bmatrix} 16 , 对应的基变量是 x 1 x_1 x1 x 2 x_2 x2 , x 3 , x 4 , x 5 x_3 , x_4, x_5 x3,x4,x5 是非基变量 ;


选中 B 9 = [ 1 0 0 1 ] B_9 = \begin{bmatrix} &1 & 0 & \\\\ & 0 & 1 & \end{bmatrix} B9=1001 作为线性规划的基矩阵 , 该基矩阵对应的基向量是 [ 1 0 ] \begin{bmatrix} &1 & \\\\ & 0 & \end{bmatrix} 10 [ 0 1 ] \begin{bmatrix} & 0 & \\\\ & 1 & \end{bmatrix} 01 , 对应的基变量是 x 4 x_4 x4 x 5 x_5 x5 , x 1 , x 2 , x 3 x_1 , x_2, x_3 x1,x2,x3 是非基变量 ;



基是不唯一的 , 基向量不是固定的 , 基变量也不是固定的 , 非基变量也不是固定的 ;

确定基矩阵后 , 才能确定基向量 , 基变量 , 非基变量 ;

不管选哪个矩阵作为基矩阵 , 基变量的个数是不变的 , 始终是 2 2 2 个 ;

基变量不固定 , 基变量的个数是固定的 ;

基变量是 2 2 2 个 , 非基变量是 3 3 3 个 , 这是确定的 ;


线性规划的最终目的是求解 ; 求可行解 , 求最优解 ;

求解就是求 线性规划标准形式 , 约束条件等式的方程组的解 , 只要是等式 , 就可以解除满足条件的解 ;


解方程组的方法就是高斯消元法 , 将系数矩阵变成阶梯形的矩阵 , 只有矩阵是可逆矩阵的情况下 , 才能变成阶梯矩阵 , 就是上述的基矩阵 ;





四、线性规划等式变型



解如下方程 :

A X = b AX = b AX=b

其中 A A A m × n m \times n m×n 矩阵 , X X X m × 1 m \times 1 m×1 向量 , b b b m × 1 m \times 1 m×1 向量 ;

如下展开为 :

(   P 1   P 2   ⋯ P m   P m + 1   ⋯   P n ) × ( x 1 x 2 ⋮ x m x m + 1 ⋮ x n ) = b \bigl( \ P_1 \ P_2 \ \cdots P_m \ P_{m+1} \ \cdots \ P_n \bigr) \times \begin{pmatrix} x_1 \\ x_2 \\ \vdots\\ x_m\\ x_{m+1}\\ \vdots\\ x_n \end{pmatrix}=b ( P1 P2 Pm Pm+1  Pn)×x1x2xmxm+1xn=b


A A A 矩阵是由一系列向量组成 , 其一定有可逆的子矩阵 , 即基矩阵 ;

假设前 m m m 个向量组成的矩阵是可逆矩阵 ,

m m m 个列向量构成可逆矩阵 B B B , 可逆矩阵 B B B 中的列向量对应的变量是 m m m 个基变量 X B X_B XB ;

在这里插入图片描述

后面的 n − m n - m nm 个列向量后构成矩阵 N N N , 这是非基矩阵 , 其对应的 n − m n - m nm 个变量是非基变量 X N X_N XN ;

在这里插入图片描述

整个线性规划表示为 : B X B + N X N = b BX_B + NX_N = b BXB+NXN=b

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值