【集合论】序关系 ( 全序关系 | 全序集 | 全序关系示例 | 拟序关系 | 拟序关系定理 | 三歧性 | 拟线序关系 | 拟线序集 )

34 篇文章 73 订阅





一、全序关系 ( 线序关系 )



A A A 集合与该集合之上的 偏序关系 ≼ \preccurlyeq 组成的有序对是 : < A , ≼ > <A, \preccurlyeq> <A,> 偏序集 ;

A A A 集合中 任意元素 x , y x, y x,y 都 可比 ;

则称 ≼ \preccurlyeq 关系是 A A A 集合上的 全序关系, 又称为 线序关系 ;

< A , ≼ > <A, \preccurlyeq> <A,> 为全序集 ( 线序集 ) ;



< A , ≼ > <A, \preccurlyeq> <A,> 偏序集 是全序集

当且仅当

< A , ≼ > <A, \preccurlyeq> <A,> 偏序集的哈斯图是一条直线





二、全序关系示例



非空集合 A A A 包含于 实数集 R R R , ∅ ≠ A ⊆ R \varnothing \not= A \subseteq R =AR ,

A A A 集合上的 大于等于 ≥ \geq , 小于等于 ≤ \leq 都是 A A A 集合上的 全序关系 ,

< A , ≤ > <A , \leq> <A,> , < A , ≥ > <A , \geq> <A,>全序集 ;


哈斯图是一条直线 ;

在这里插入图片描述





三、拟序关系



非空集合 A A A , 二元关系 R R R A A A 集合上的二元关系 ;

符号化表示 : A ≠ ∅ A \not= \varnothing A= , R ⊆ A × A R \subseteq A \times A RA×A ;

如果 二元关系 R R R反自反 , 传递 的 ,

则称 R R R 关系是 A A A 集合上的拟序关系 ,

使用 ≺ \prec 表示拟序关系 ,

< A , ≺ > <A , \prec> <A,> 是拟序集 ;


偏序关系 ≼ \preccurlyeq 是 小于等于 关系 , 拟序关系 ≺ \prec 就是 严格小于 关系 ;


拟序关系示例 : 大于 , 小于 , 真包含 , 都是拟序关系 ;


拟序关系 完整的性质是 反自反 , 反对称 , 传递 ,
之所以概念中没有提 反对称 性质 , 是因为 根据 反自反 , 传递性质 , 可以推导出 反对称 性质 ;

数学中倾向于使用最小的条件进行定义 , 因此这里将反对称性去掉 ;





四、拟序关系定理 1



非空集合 A A A , A ≠ ∅ A \not= \varnothing A= ,

≼ \preccurlyeq 是非空集合 A A A 上的偏序关系 ,

≺ \prec 是非空集合 A A A 上的拟序关系 ;


① 偏序关系性质 : ≼ \preccurlyeq 自反 , 反对称 , 传递的

② 拟序关系性质 : ≺ \prec 反自反 , 反对称 , 传递的

③ 偏序关系 -> 拟序关系 : 偏序关系 减去 恒等关系 就是 拟序关系 , ≼ − I A = ≺ \preccurlyeq - I_A = \prec IA=

④ 拟序关系 -> 偏序关系 : 拟序关系 与 恒等关系 的并集就是 偏序关系 , ≺ ∪ I A = ≼ \prec \cup I_A = \preccurlyeq IA= ;





四、拟序关系定理 2



非空集合 A A A , A ≠ ∅ A \not= \varnothing A= ,

≺ \prec 是非空集合 A A A 上的拟序关系 ;


x ≺ y x \prec y xy , x = y x=y x=y , y ≺ x y \prec x yx 中最多有一个成立 ;

使用反证法 , 任意两个成立都会导致 x ≺ x x \prec x xx ;


( x ≺ y ∧ x = y ) ∧ ( y ≺ x ∧ x = y ) ⇒ x = y (x\prec y \land x = y) \land (y \prec x \land x=y) \Rightarrow x = y (xyx=y)(yxx=y)x=y





五、三歧性、拟线序



非空集合 A A A , A ≠ ∅ A \not= \varnothing A= ,

≺ \prec 是非空集合 A A A 上的拟序关系 ;


如果 x ≺ y x \prec y xy , x = y x=y x=y , y ≺ x y \prec x yx 中仅有一个城里 , 那么称 ≺ \prec 拟序关系 具有 三歧性 ;

有三歧性的 逆序关系 ≺ \prec 称为 A A A 集合上的 拟线序关系 , 又称为拟全序关系 ;

< A ≺ > <A \prec> <A> 被称为 拟线序集 ;

  • 8
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
假设有限全序集 $A$ 不是良,那么存在一个非空子 $B\subseteq A$,它没有最小元素。因为 $A$ 是有限的,所以 $B$ 也是有限的。 考虑 $B$ 中某个元素 $b$,它一定可以写成 $b=b_1$ 或者 $b=b_2$,其中 $b_1$ 是 $B$ 中除 $b$ 以外最小的元素,$b_2$ 是 $B$ 中除 $b_1$ 和 $b$ 以外最小的元素。因为 $b$ 没有最小元素,所以 $b_2$ 一定存在。由于 $b$ 在 $B$ 中,所以 $b_1$ 和 $b_2$ 必然都在 $B$ 中。 我们可以通过不断重复上述过程,在 $B$ 中得到一个元素列 $b_1<b_2<\cdots<b_n$,其中 $n$ 是一个正整数。注意到 $n\leq |B|<|A|$,即 $n$ 严格小于 $A$ 的元素个数。 现在考虑 $A$ 中 $b_n$ 的后继元素 $c$,即 $c>b_n$ 且 $c\in A$。因为 $B=\{b_1,b_2,\ldots,b_n\}$ 中没有最小元素,所以 $c$ 一定不是 $B$ 中的元素。另一方面,$B\subseteq A$,所以 $c$ 必然存在。 我们有 $b_1\leq b_2\leq \cdots \leq b_n<b_{n+1}\leq \cdots \leq c$。因为全序关系具有可传递性,所以 $b_1<c$。 我们接下来证明 $b_1$ 是 $B$ 中的最小元素。假设 $b_1$ 不是 $B$ 中的最小元素,即存在 $b_i (1<i\leq n)$ 满足 $b_i<b_1$。因为 $B$ 是有限的,所以可以选取最小的这样的 $i$。注意到 $i>1$,所以 $b_{i-1}$ 存在。由于 $B=\{b_1,b_2,\ldots,b_n\}$ 中没有最小元素,所以存在 $j<i$ 满足 $b_j<b_i$。注意到 $j>1$,所以 $b_{j-1}$ 存在。但是从 $j$ 到 $i-1$,$B$ 中所有的元素都小于 $b_i$,矛盾。 因此,$b_1$ 是 $B$ 中的最小元素。但是这与 $B$ 没有最小元素矛盾,因此我们得到了一个矛盾。因此,假设不成立,即每个有限全序集都是良

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值