文章目录
参考博客 : 按照顺序看
- 【组合数学】生成函数 简要介绍 ( 生成函数定义 | 牛顿二项式系数 | 常用的生成函数 | 与常数相关 | 与二项式系数相关 | 与多项式系数相关 )
- 【组合数学】生成函数 ( 线性性质 | 乘积性质 )
- 【组合数学】生成函数 ( 移位性质 )
- 【组合数学】生成函数 ( 求和性质 )
- 【组合数学】生成函数 ( 换元性质 | 求导性质 | 积分性质 )
- 【组合数学】生成函数 ( 性质总结 | 重要的生成函数 ) ★
- 【组合数学】生成函数 ( 生成函数示例 | 给定通项公式求生成函数 | 给定生成函数求通项公式 )
- 【组合数学】生成函数 ( 生成函数应用场景 | 使用生成函数求解递推方程 )
- 【组合数学】生成函数 ( 使用生成函数求解多重集 r 组合数 )
- 【组合数学】生成函数 ( 使用生成函数求解不定方程解个数 )
- 【组合数学】生成函数 ( 使用生成函数求解不定方程解个数示例 )
- 【组合数学】生成函数 ( 使用生成函数求解不定方程解个数示例 2 | 扩展到整数解 )
- 【组合数学】生成函数 ( 正整数拆分 | 无序 | 有序 | 允许重复 | 不允许重复 | 无序不重复拆分 | 无序重复拆分 )
- 【组合数学】生成函数 ( 正整数拆分 | 无序不重复拆分示例 )
- 【组合数学】生成函数 ( 正整数拆分 | 正整数拆分基本模型 | 有限制条件的无序拆分 )
- 【组合数学】生成函数 ( 正整数拆分 | 重复有序拆分 | 不重复有序拆分 | 重复有序拆分方案数证明 )
- 【组合数学】指数生成函数 ( 指数生成函数概念 | 排列数指数生成函数 = 组合数普通生成函数 | 指数生成函数示例 )
- 【组合数学】指数生成函数 ( 指数生成函数性质 | 指数生成函数求解多重集排列 )
- 【组合数学】指数生成函数 ( 指数生成函数求解多重集排列示例 )
一、指数生成函数求解多重集排列示例 2
使用 白色 红色 蓝色 涂色 n n n 个格子 , 白色的涂色个数是偶数 , 求涂色方案个数
这是一个 排列问题 , 当不同的方格涂色交换之后 , 就变成了不同的方案 ,
红色 , 蓝色 涂色 , 没有限制 , 涂色个数可以是 0 , 1 , 2 , 3 , 4 , ⋯ 0, 1,2,3,4,\cdots 0,1,2,3,4,⋯
白色 涂色 , 涂色个数是偶数个 , 涂色个数是 0 , 2 , 4 , 6 , 8 , ⋯ 0, 2, 4, 6, 8 , \cdots 0,2,4,6,8,⋯
红色 , 蓝色 涂色个数 0 , 1 , 2 , 3 , 4 , ⋯ 0, 1,2,3,4,\cdots 0,1,2,3,4,⋯ 序列 , 对应的生成函数项为 :
x 0 0 ! + x 1 1 ! + x 2 2 ! ⋯ = 1 + x + x 2 2 ! + ⋯ \cfrac{x^0}{0!} + \cfrac{x^1}{1!} + \cfrac{x^2}{2!} \cdots = 1 + x + \cfrac{x^2}{2!} + \cdots 0!x0+1!x1+2!x2⋯=1+x+2!x2+⋯
白色 涂色个数 0 , 2 , 4 , 6 , 8 , ⋯ 0, 2, 4, 6, 8 , \cdots 0,2,4,6,8,⋯ 序列 , 对应的生成函数项为 :
x 0 0 ! + x 2 2 ! + x 4 4 ! ⋯ = 1 + x 2 2 ! + x 4 4 ! + ⋯ \cfrac{x^0}{0!} + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} \cdots = 1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots 0!x0+2!x2+4!x4⋯=1+2!x2+4!x4+⋯
上述涂色方案个数的指数生成函数是 :
G e ( x ) = ( 1 + x + x 2 2 ! + ⋯ ) ( 1 + x + x 2 2 ! + ⋯ ) ( 1 + x 2 2 ! + x 4 4 ! + ⋯ ) G_e(x) = (1 + x + \cfrac{x^2}{2!} + \cdots) (1 + x + \cfrac{x^2}{2!} + \cdots) (1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots) Ge(x)=(1+x+2!x2+⋯)(1+x+2!x2+⋯)(1+2!x2+4!x4+⋯)
其中 1 + x + x 2 2 ! + ⋯ 1 + x + \cfrac{x^2}{2!} + \cdots 1+x+2!x2+⋯ 可以 写成 e x e^x ex 形式 ;
其中 1 + x 2 2 ! + x 4 4 ! + ⋯ 1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots 1+2!x2+4!x4+⋯ 可以写成如下形式 :
1 + x 2 2 ! + x 4 4 ! + ⋯ = 1 2 ( e x + e − x ) 1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots = \cfrac{1}{2}(e^x + e^{-x}) 1+2!x2+4!x4+⋯=21(ex+e−x)
e x + e − x e^x + e^{-x} ex+e−x 相加 , 奇次幂符号相反 , 直接约掉 , 偶数次幂 变为原来的两倍, 因此在外面乘以 1 2 \cfrac{1}{2} 21 ;
将上述 e x e^x ex 和 1 2 ( e x + e − x ) \cfrac{1}{2}(e^x + e^{-x}) 21(ex+e−x) 替换到 指数生成函数中 ;
G e ( x ) = ( 1 + x + x 2 2 ! + ⋯ ) ( 1 + x + x 2 2 ! + ⋯ ) ( 1 + x 2 2 ! + x 4 4 ! + ⋯ ) G_e(x) = (1 + x + \cfrac{x^2}{2!} + \cdots) (1 + x + \cfrac{x^2}{2!} + \cdots) (1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots) Ge(x)=(1+x+2!x2+⋯)(1+x+2!x2+⋯)(1+2!x2+4!x4+⋯)
= 1 2 ( e x + e − x ) ( e x ) ( e x ) \ \ \ \ \ \ \ \ \ \ \ \, =\cfrac{1}{2}(e^x + e^{-x})(e^x )(e^x) =21(ex+e−x)(ex)(ex)
= 1 2 e 3 x + 1 2 e x \ \ \ \ \ \ \ \ \ \ \ \, =\cfrac{1}{2}e^{3x} + \cfrac{1}{2}e^{x} =21e3x+21ex
将 1 2 e x \cfrac{1}{2}e^{x} 21ex 展开后为 1 2 ( 1 + x + x 2 2 ! + ⋯ ) = 1 2 ∑ n = 0 ∞ x n n ! \cfrac{1}{2}(1 + x + \cfrac{x^2}{2!} + \cdots)=\cfrac{1}{2}\sum\limits_{n=0}^\infty \cfrac{x^n}{n!} 21(1+x+2!x2+⋯)=21n=0∑∞n!xn
将 1 2 e 3 x \cfrac{1}{2}e^{3x} 21e3x 展开后为 1 2 ( 1 + 3 x + ( 3 x ) 2 2 ! + ⋯ ) = 1 2 ∑ n = 0 ∞ 3 n x n n ! \cfrac{1}{2}(1 + 3x + \cfrac{(3x)^2}{2!} + \cdots)=\cfrac{1}{2}\sum\limits_{n=0}^\infty \cfrac{3^nx^n}{n!} 21(1+3x+2!(3x)2+⋯)=21n=0∑∞n!3nxn
= 1 2 ∑ n = 0 ∞ 3 n x n n ! + 1 2 ∑ n = 0 ∞ x n n ! \ \ \ \ \ \ \ \ \ \ \ \, =\cfrac{1}{2}\sum\limits_{n=0}^\infty \cfrac{3^nx^n}{n!} + \cfrac{1}{2}\sum\limits_{n=0}^\infty \cfrac{x^n}{n!} =21n=0∑∞n!3nxn+21n=0∑∞n!xn
= ∑ n = 0 ∞ 3 n + 1 2 ⋅ x n n ! \ \ \ \ \ \ \ \ \ \ \ \, =\sum\limits_{n=0}^\infty \cfrac{3^n + 1}{2} \cdot \cfrac{x^n}{n!} =n=0∑∞23n+1⋅n!xn
x n n ! \cfrac{x^n}{n!} n!xn 前的系数是 3 n + 1 2 \cfrac{3^n + 1}{2} 23n+1
因此 白色 红色 蓝色 涂色 n n n 个格子 , 白色是偶数的情况下 , 涂色方案有 3 n + 1 2 \cfrac{3^n + 1}{2} 23n+1 种 ;