【组合数学】指数生成函数 ( 指数生成函数求解多重集排列示例 2 )

该文深入探讨了指数生成函数在解决涂色方案计数问题中的应用,具体是一个关于白色、红色和蓝色涂色的排列问题。通过建立生成函数模型,分析白色涂色必须为偶数的情况,最终得出涂色方案总数的表达式,展示了指数生成函数在组合数学中的强大计算能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



参考博客 : 按照顺序看





一、指数生成函数求解多重集排列示例 2



使用 白色 红色 蓝色 涂色 n n n 个格子 , 白色的涂色个数是偶数 , 求涂色方案个数



这是一个 排列问题 , 当不同的方格涂色交换之后 , 就变成了不同的方案 ,


红色 , 蓝色 涂色 , 没有限制 , 涂色个数可以是 0 , 1 , 2 , 3 , 4 , ⋯ 0, 1,2,3,4,\cdots 0,1,2,3,4,

白色 涂色 , 涂色个数是偶数个 , 涂色个数是 0 , 2 , 4 , 6 , 8 , ⋯ 0, 2, 4, 6, 8 , \cdots 0,2,4,6,8,


红色 , 蓝色 涂色个数 0 , 1 , 2 , 3 , 4 , ⋯ 0, 1,2,3,4,\cdots 0,1,2,3,4, 序列 , 对应的生成函数项为 :

x 0 0 ! + x 1 1 ! + x 2 2 ! ⋯ = 1 + x + x 2 2 ! + ⋯ \cfrac{x^0}{0!} + \cfrac{x^1}{1!} + \cfrac{x^2}{2!} \cdots = 1 + x + \cfrac{x^2}{2!} + \cdots 0!x0+1!x1+2!x2=1+x+2!x2+


白色 涂色个数 0 , 2 , 4 , 6 , 8 , ⋯ 0, 2, 4, 6, 8 , \cdots 0,2,4,6,8, 序列 , 对应的生成函数项为 :

x 0 0 ! + x 2 2 ! + x 4 4 ! ⋯ = 1 + x 2 2 ! + x 4 4 ! + ⋯ \cfrac{x^0}{0!} + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} \cdots = 1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots 0!x0+2!x2+4!x4=1+2!x2+4!x4+


上述涂色方案个数的指数生成函数是 :

G e ( x ) = ( 1 + x + x 2 2 ! + ⋯   ) ( 1 + x + x 2 2 ! + ⋯   ) ( 1 + x 2 2 ! + x 4 4 ! + ⋯   ) G_e(x) = (1 + x + \cfrac{x^2}{2!} + \cdots) (1 + x + \cfrac{x^2}{2!} + \cdots) (1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots) Ge(x)=(1+x+2!x2+)(1+x+2!x2+)(1+2!x2+4!x4+)


其中 1 + x + x 2 2 ! + ⋯ 1 + x + \cfrac{x^2}{2!} + \cdots 1+x+2!x2+ 可以 写成 e x e^x ex 形式 ;


其中 1 + x 2 2 ! + x 4 4 ! + ⋯ 1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots 1+2!x2+4!x4+ 可以写成如下形式 :

1 + x 2 2 ! + x 4 4 ! + ⋯ = 1 2 ( e x + e − x ) 1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots = \cfrac{1}{2}(e^x + e^{-x}) 1+2!x2+4!x4+=21(ex+ex)

e x + e − x e^x + e^{-x} ex+ex 相加 , 奇次幂符号相反 , 直接约掉 , 偶数次幂 变为原来的两倍, 因此在外面乘以 1 2 \cfrac{1}{2} 21 ;


将上述 e x e^x ex 1 2 ( e x + e − x ) \cfrac{1}{2}(e^x + e^{-x}) 21(ex+ex) 替换到 指数生成函数中 ;


G e ( x ) = ( 1 + x + x 2 2 ! + ⋯   ) ( 1 + x + x 2 2 ! + ⋯   ) ( 1 + x 2 2 ! + x 4 4 ! + ⋯   ) G_e(x) = (1 + x + \cfrac{x^2}{2!} + \cdots) (1 + x + \cfrac{x^2}{2!} + \cdots) (1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots) Ge(x)=(1+x+2!x2+)(1+x+2!x2+)(1+2!x2+4!x4+)

              = 1 2 ( e x + e − x ) ( e x ) ( e x ) \ \ \ \ \ \ \ \ \ \ \ \, =\cfrac{1}{2}(e^x + e^{-x})(e^x )(e^x)            =21(ex+ex)(ex)(ex)

              = 1 2 e 3 x + 1 2 e x \ \ \ \ \ \ \ \ \ \ \ \, =\cfrac{1}{2}e^{3x} + \cfrac{1}{2}e^{x}            =21e3x+21ex


1 2 e x \cfrac{1}{2}e^{x} 21ex 展开后为 1 2 ( 1 + x + x 2 2 ! + ⋯   ) = 1 2 ∑ n = 0 ∞ x n n ! \cfrac{1}{2}(1 + x + \cfrac{x^2}{2!} + \cdots)=\cfrac{1}{2}\sum\limits_{n=0}^\infty \cfrac{x^n}{n!} 21(1+x+2!x2+)=21n=0n!xn

1 2 e 3 x \cfrac{1}{2}e^{3x} 21e3x 展开后为 1 2 ( 1 + 3 x + ( 3 x ) 2 2 ! + ⋯   ) = 1 2 ∑ n = 0 ∞ 3 n x n n ! \cfrac{1}{2}(1 + 3x + \cfrac{(3x)^2}{2!} + \cdots)=\cfrac{1}{2}\sum\limits_{n=0}^\infty \cfrac{3^nx^n}{n!} 21(1+3x+2!(3x)2+)=21n=0n!3nxn


              = 1 2 ∑ n = 0 ∞ 3 n x n n ! + 1 2 ∑ n = 0 ∞ x n n ! \ \ \ \ \ \ \ \ \ \ \ \, =\cfrac{1}{2}\sum\limits_{n=0}^\infty \cfrac{3^nx^n}{n!} + \cfrac{1}{2}\sum\limits_{n=0}^\infty \cfrac{x^n}{n!}            =21n=0n!3nxn+21n=0n!xn

              = ∑ n = 0 ∞ 3 n + 1 2 ⋅ x n n ! \ \ \ \ \ \ \ \ \ \ \ \, =\sum\limits_{n=0}^\infty \cfrac{3^n + 1}{2} \cdot \cfrac{x^n}{n!}            =n=023n+1n!xn



x n n ! \cfrac{x^n}{n!} n!xn 前的系数是 3 n + 1 2 \cfrac{3^n + 1}{2} 23n+1

因此 白色 红色 蓝色 涂色 n n n 个格子 , 白色是偶数的情况下 , 涂色方案有 3 n + 1 2 \cfrac{3^n + 1}{2} 23n+1 种 ;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值