【运筹学】运输规划求最大值 ( 运输规划求最大值问题示例 | 转为运输规划求最小值的方式 )





一、运输规划求最大值问题



目标函数求最大值 : 如求利润最大值 , 营业额最大值 ;

m a x Z = ∑ i = 1 m ∑ j = 1 n c i j x i j s . t { ∑ j = 1 n x i j = a i      (   i = 1 , 2 , 3 , ⋯   , m   ) ∑ i = 1 m x i j = b j      (   j = 1 , 2 , 3 , ⋯   , n   ) x i j ≥ 0      (   i = 1 , 2 , 3 , ⋯   , m    ;    j = 1 , 2 , 3 , ⋯   , n   ) \begin{array}{lcl} \rm maxZ = \sum_{i = 1}^{m} \sum_{j = 1}^{n} c_{ij} x_{ij} \\\\ \rm s.t\begin{cases} \rm \sum_{j = 1}^{n} x_{ij} = a_i \ \ \ \ ( \ i = 1, 2,3, \cdots , m \ ) \\\\ \rm \sum_{i = 1}^{m} x_{ij} = b_j \ \ \ \ ( \ j = 1, 2,3, \cdots , n \ ) \\\\ \rm x_{ij} \geq 0 \ \ \ \ ( \ i = 1, 2,3, \cdots , m \ \ ; \ \ j = 1, 2,3, \cdots , n \ ) \end{cases}\end{array} maxZ=i=1mj=1ncijxijs.tj=1nxij=ai    ( i=1,2,3,,m )i=1mxij=bj    ( j=1,2,3,,n )xij0    ( i=1,2,3,,m  ;  j=1,2,3,,n )





二、运输规划求最大值问题示例



下面的表格是 A i    ( i = 1 , 2 , 3 ) \rm A_i \ \ ( i = 1,2,3 ) Ai  (i=1,2,3) B j    ( j = 1 , 2 , 3 ) \rm B_j \ \ ( j = 1,2,3 ) Bj  (j=1,2,3) 的吨公里利润 , 如何安排运输 , 能使得总利润最大 ;

B 1 \rm B_1 B1 B 2 \rm B_2 B2 B 3 \rm B_3 B3产量
A 1 \rm A_1 A1 2 2 2 5 5 5 8 8 8 9 9 9
A 2 \rm A_2 A2 9 9 9 10 10 10 7 7 7 10 10 10
A 3 \rm A_3 A3 6 6 6 5 5 5 4 4 4 12 12 12
销量 8 8 8 14 14 14 9 9 9

目标函数求最大问题 , 可以转化为求最小问题 , 给目标函数所有的数都乘以 − 1 -1 1 ,

B 1 \rm B_1 B1 B 2 \rm B_2 B2 B 3 \rm B_3 B3产量
A 1 \rm A_1 A1 − 2 -2 2 − 5 -5 5 − 8 -8 8 9 9 9
A 2 \rm A_2 A2 − 9 -9 9 − 10 -10 10 − 7 -7 7 10 10 10
A 3 \rm A_3 A3 − 6 -6 6 − 5 -5 5 − 4 -4 4 12 12 12
销量 8 8 8 14 14 14 9 9 9

在所有值都变为负数后 , 为了方便计算 , 给所有的值都加上一个正数 , 计算的数值虽然不同 , 但是最终的运输规划结果是相同的 ;

如加上 14 14 14 , 表格变为 :

B 1 \rm B_1 B1 B 2 \rm B_2 B2 B 3 \rm B_3 B3产量
A 1 \rm A_1 A1 12 12 12 9 9 9 6 6 6 9 9 9
A 2 \rm A_2 A2 5 5 5 4 4 4 7 7 7 10 10 10
A 3 \rm A_3 A3 8 8 8 9 9 9 10 10 10 12 12 12
销量 8 8 8 14 14 14 9 9 9

求上述运输规划最小值即可 ;

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值