【数字信号处理】LTI 系统因果性与稳定性示例 ( 示例一 | 示例二 )

本文通过两个示例详细分析了离散时间系统的因果性和稳定性。在示例一中,系统通过加权平均的方式确定输出,证明了其因果性和稳定性。在示例二中,系统输出为输入的指数函数,同样展示了因果性和稳定性。这两个例子揭示了系统设计中因果性和稳定性的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >





一、系统因果性与稳定性示例一



判断系统的 因果性 与 稳定性 :

y ( n ) = 1 N ∑ k = 0 N − 1 x ( n − k ) y(n) = \cfrac{1}{N}\sum_{k=0}^{N-1}x(n-k) y(n)=N1k=0N1x(nk)


因果性 : " 离散时间系统 " n n n 时刻" 输出 " , 只取决于 n n n 时刻 及 n n n 时刻 之前 " 输入序列 " , 与 n n n 时刻之后 " 输入序列 " 无关 ;

稳定性 : 如果 " 输入序列 " 有界 , 则 " 输出序列 " 也有界 ;


因果性证明 :

由于 k k k 的取值范围是 [ 0 , N − 1 ] [0, N-1] [0,N1] 区间 ,

y ( n ) y(n) y(n) x ( n ) , x ( n − 1 ) , ⋯   , x ( n − N + 1 ) x(n) , x(n-1) , \cdots , x(n - N + 1) x(n),x(n1),,x(nN+1) 有关 ;

也就是 y ( n ) y(n) y(n) 只与 n n n 时刻以及 n n n 时刻之前的 " 输入序列 " 有关 ,

因此 , 该系统具有 " 因果性 " ;


稳定性证明 :

如果 ∣ x ( n ) ∣ ≤ B |x(n)| \leq B x(n)B , 是有界的 ,

则有 ∣ y ( n ) ∣ ≤ 1 N × N B = B |y(n)| \leq \cfrac{1}{N} \times NB = B y(n)N1×NB=B , 求和的结果也是有界的 ,

∑ h ( n ) < ∞ \sum h(n) < \infty h(n)< 就是不可和的 ;

因此 , 该系统具有 " 稳定性 " ;





二、系统因果性与稳定性示例二



判断系统的 因果性 与 稳定性 :

y ( n ) = e x ( n ) y(n) = e^{x(n)} y(n)=ex(n)


因果性 : " 离散时间系统 " n n n 时刻" 输出 " , 只取决于 n n n 时刻 及 n n n 时刻 之前 " 输入序列 " , 与 n n n 时刻之后 " 输入序列 " 无关 ;

稳定性 : 如果 " 输入序列 " 有界 , 则 " 输出序列 " 也有界 ;


因果性证明 :

y ( n ) y(n) y(n) x ( n ) x(n) x(n) 有关 ;

也就是 y ( n ) y(n) y(n) n n n 时刻以及 n n n 时刻之前的 " 输入序列 " 有关 , 更准确的说是 只与 n n n 时刻的 x ( n ) x(n) x(n) 有关 ;

因此 , 该系统具有 " 因果性 " ;


稳定性证明 :

如果 ∣ x ( n ) ∣ ≤ B |x(n)| \leq B x(n)B , 是有界的 ,

则有 ∣ y ( n ) ∣ ≤ e B |y(n)| \leq e^B y(n)eB , 求和的结果也是有界的 ,

∑ h ( n ) < ∞ \sum h(n) < \infty h(n)< 就是不可和的 ;

因此 , 该系统具有 " 稳定性 " ;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值