《数字信号处理》学习06-因果系统与稳定系统

目录

一,因果系统

二,稳定系统


 

之前学习了系统中的线性时不变系统(LTI 系统),接下来学习线性时不变系统(LTI 系统)中的因果系统与稳定系统。(非LTI系统这里暂时不作为学习的要求)

一,因果系统

在《周易·系辞上》中就涉及到“有果必有因”的概念。

通过百度百科的“因果律”可知:                                                                                                         

“果由因生:无因不能生果,有果必有其因。

其具有时间序列性,原因必定在先,结果只能在后,二者的时间顺序不能颠倒。”

可见,先因后果,但不是所有的离散时间LTI 系统都具有因果性。

LTI 系统中的因果性要求LTI 系统的输出值只与当前及之前的输入值有关,而与之后的输入值无关。

如果一个离散时间LTI系统的输出序列  eq?y%28n%29  在 eq?n%3Dn_%7B0%7D 的取值 eq?y%28n_%7B0%7D%29 只取决于 eq?n%3C%3Dn_%7B0%7D 的输入序列,那么这个LTI 系统就是一个离散时间因果系统(或称该系统具有因果性)

通过之前的学习可知:系统只对输入序列有响应,如果输入的序列带有其它函数或者是系数,统一作为常数提出(不考虑)。由于因果系统是LTI 系统中的一种,因此因果系统也只考虑输入输出的关系,其它函数的影响不考虑。

结合上面的知识和书中具有因果性的LTI系统的充要条件:
aa9120bedf0d48dfb52acf96c609ac23.png接下来就可以做题,如下判断LTI系统是否是因果系统👇 

ec649fa8d1eb4248b257e9513bf936d6.png

在上图的题目里面,如果我将第一个小问修改成如下:
(1)   h(n)=nu(n)+u(n-1)

 问:该LTI系统是否仍是因果系统?

答:是,因为y(n)只取决于现在和过去的输入x(n),不取决于未来的输人,所以该系统是因果系统。

(系统的输入序列是 x(n),同时,系统的输出序列为 h(n) ,它们的离散时间变量都是n

有了因果系统,也就会有因果序列,如果一个序列满足:
eq?n%3C0%2Ch%28n%29%3D0 

则,该序列就是一个因果序列。

可以看到,对于一个因果LTI系统来说,它的的单位冲激序列  eq?h%28n%29  一定是因果序列

n<0,h(n)=0)。

二,稳定系统

首先需要知道什么是稳定系统:

如果一个LTI 系统的所有有界输入都能够产生有界输出,那么该LTI 系统是个稳定系统(具有稳定性) 。

因此,在判断LTI 系统是否具有稳定性时,需要考虑所有的有界输入。

如下题👇,通过定义判断该LTI 系统是否是稳定系统(具有稳定性)

 

思路:

根据稳定系统的定义,需要系统的输入序列 x(n) 的序列值有界,即\left | x(n) \right |\leq M<\infty,因此,可以先假设该系统的输入序列就是有界的,然后再去判断系统能不能产生有界输出。

解答:

假设\left | x(n) \right |\leq M<\infty,则 y(n)=M+0.5M=1.5M< \infty,该系统有界,所以该系统是稳定系统(系统具有稳定性)。

标准: 

 前面也提到过,LTI 系统可以用单位冲激响应 h(n)  来唯一表征,因此,不管是判断LTI 系统的因果性,还是LTI 系统的稳定性,都将单位冲激响应 h(n) 作为讨论的对象。

如果一个LTI 系统是稳定系统,那么就需要单位冲激响应 h(n) 绝对可和,即:
\sum_{n=-\infty }^{+\infty}\left | h(n)\right |<\infty

如下题👇,给出单位冲激响应 h(n) 判断该LTI 系统是否是稳定系统(具有稳定性)

 

思路:根据 因果LTI 系统的 单位冲激响应 h(n)绝对可和来解题。

解答:

\because

 \sum_{n=-\infty }^{+\infty}\left | h(n) \right |

=\sum_{n=-\infty }^{+\infty}\left |-2^{n} u(-n-1))\right |    

=\sum_{n=-\infty }^{+\infty}\left |-2^{n} u(-(n+1))\right |      //   当 n\leq -1u(-(n+1) 才有取值

=\sum_{n=-\infty }^{-1 }2^{n}

=\sum_{n=1 }^{+\infty }\frac{1}{2^{n}}    

=\frac{\frac{1}{2}(1-(\frac{1}{2})^{n})}{1-\frac{1}{2}}            // 等比数列的求和公式:S_{n}=\frac{a_{1}(1-q^{n})}{1-q}

=\frac{\frac{1}{2}(1-0)}{1-\frac{1}{2}}                // 利用极限:\underset{n \to \infty }{lim}( \frac{1}{2})^{n}=0    ,有限数除以无穷大的数,结果为0.

=\frac{1}{2}\times 2

=1< \infty

\therefore 该系统的输出有界,系统是稳定系统。

 如果一个LTI 系统同时 具有因果性和稳定性,则该LTI 系统是 因果稳定的系统,因果稳定系统是物理可实现的。

有问题请在评论区留言或者是私信我,回复时间不超过一天。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值