根据经合组织,人类福祉的首要原则意味着:
利益攸关方应积极主动地对可信赖的人工智能进行负责任的管理,以寻求对人类和地球有益的成果,例如增强人类能力和增强创造力,促进对代表性不足人群的包容,减少经济、社会、性别和其他不平等,以及保护自然环境,从而促进包容性增长、可持续发展和福祉。
这一原则基本上提出了人工智能(“AI”)应该被用来让人类社会对每个人都更好,人工智能应该被用来维持地球。这是应该支持其他五项道德人工智能原则(透明度和可解释性,隐私,安全和保障,公平和公正以及问责制)的主要原则。
技术是人类社会为人类社会而发明的。然而,如果人工智能系统摧毁了我们的星球,加剧了不平等和贫困,并消除了所有的白标工作,会发生什么?本文将专门介绍人工智能对人类社会构成生存威胁的主题,人工智能可能在劳动力方面接管所有人及其对环境的影响。
生存威胁
人工智能是否构成生存威胁的问题是一个专家和研究人员之间持续争论和猜测的话题。在处理这个问题时,必须仔细考虑各种观点。
一些个人和组织对与开发和部署高级人工智能系统相关的潜在风险表示担忧。这些担忧的范围从人工智能系统超越人类智能,变得无法控制或以对人类有害的方式行事,到人工智能被用于恶意目的,如自主武器或大规模监控。
事实上,科技公司的首席执行官、人工智能研究人员以及学术教授都签署了以下声明:减轻人工智能灭绝的风险应该与流行病和核战争等其他社会规模的风险一起成为全球优先事项。完整的签署者名单可以在这里找到:https://www.safe.ai/statement-on-ai-risk#signatories
该声明是在人们对人工智能的潜在负面影响日益担忧的情况下发表的。ChatGPT和其他聊天机器人等大型语言模型的显着进展引发了人们对错误信息和宣传的广泛传播以及众多白领工作的潜在取代的担忧。
必须继续监测和研究人工智能的进步,识别潜在风险,并通过技术、道德和政策措施积极应对这些风险。这包括正在进行的人工智能安全研究、人工智能系统的稳健测试和验证,以及建立框架以确保负责任和有益的人工智能部署。
以下是蒙克关于人工智能研发构成生存威胁的辩论。
劳动
根据高盛(Goldman Sachs)的一份报告,人工智能有可能取代大约3亿个全职工作。随着人工智能技术的不断进步,它们正在重塑人类劳动格局,机遇与挑战并存。自动化是人工智能对人类劳动的主要影响之一。人工智能系统擅长快速、准确和高效地执行重复性和日常任务,从而提高企业的生产力并节省成本。然而,这种自动化也可能导致工作流失,特别是对于从事体力劳动或可预测的、基于规则的活动的工人。高盛(Goldman Sachs)的报告强调了行政和法律专业对自动化的脆弱性。
链接: https://www.weforum.org/agenda/2023/05/jobs-lost-created-ai-gpt/
尽管工作被取代,但人工智能也有可能创造新的角色和机会。随着日常任务变得自动化,员工可以将注意力转移到更高层次、创造性和复杂的任务上,这些任务需要独特的人类技能,如批判性思维、解决问题和情商。人工智能可以作为人类劳动的补充,增强人类的能力,使工人能够专注于需要人性化的任务。世界经济论坛确定了几个增长最快的职位,包括人工智能和机器学习专家、可持续发展专家、商业智能分析师、信息安全分析师、金融科技工程师、数据分析师和科学家、机器人工程师、电工工程师、农业设备操作员和数字化转型专家。
此外,人工智能技术可以提高工作绩效并支持工人完成任务。人工智能驱动的工具和软件通过提供有价值的见解、预测和建议,帮助专业人士进行数据分析、决策和解决问题。人类与人工智能系统之间的这种合作促进了各个领域的效率、准确性和创新的提高。值得注意的是,人工智能对人类劳动的影响在所有部门和职业中并不统一。涉及复杂社交互动(即:社会工作者)、创造力(即马戏团艺术家)、适应性和情商的行业不太容易受到自动化的影响。同样,需要身体灵活性、同理心(即心理学家)和专业知识的角色可能仍然主要由人类驱动。
人工智能的广泛采用需要劳动力技能和能力的转变。随着自动化接管日常任务,对精通数据分析、机器学习、人工智能开发和算法思维的个人的需求也在增加。技能提升和再培训计划对于为劳动力配备在人工智能驱动的经济中茁壮成长的必要能力至关重要。适应不断变化的就业环境对于个人在人工智能时代保持竞争力和寻找新机会至关重要。
环境
人工智能是一个快速发展的领域,在各个领域具有巨大的创新和转型潜力。然而,重要的是要认识到人工智能也有需要仔细考虑的环境影响。虽然人工智能可以在某些领域提高效率和可持续性,但它也可能导致能源消耗和资源使用增加。
在一篇新论文中,马萨诸塞大学阿默斯特分校的研究人员对训练几种常见的大型人工智能模型进行了生命周期评估。他们发现,这个过程可以排放超过626,000磅的二氧化碳当量 - 几乎是美国普通汽车(包括汽车本身的制造)的五倍。此外,依赖于大量数据处理和存储的人工智能应用程序在数据中心消耗大量电力。这些数据中心需要冷却系统来保持最佳工作温度,从而导致额外的能源消耗。
人工智能对环境的影响的一个主要方面是训练和运行人工智能模型所需的计算能力。训练复杂的深度学习算法需要大量的计算资源,这通常涉及能源密集型流程和强大的硬件基础设施。这导致了大量的碳足迹,尤其是在大规模人工智能部署的情况下。值得注意的是,仅ChatGPT就消耗了相当于175,000人的电力,其第三个版本的培训排放了550二氧化碳。此外,像谷歌和Microsoft这样的公司还没有公开披露其生成人工智能模型的能耗。
然而,值得一提的是,人工智能也为环境可持续性提供了机会。人工智能驱动的优化算法可以增强能源管理、运输和农业等各个行业的资源分配和效率。例如,人工智能驱动的系统可以优化建筑物的能源消耗,改善交通流量以减少拥堵和排放,并使精准农业能够最大限度地减少水和肥料的使用。人工智能在应对环境挑战中的应用在此链接的一篇有趣文章中进行了展示: