tensorflow 高阶操作1(合并分割、数据统计、张量排序、填充复制、张量限幅、坐标操作)

本文详细介绍了TensorFlow中的高阶操作,包括张量的合并(tf.concat)、分割(tf.split)、堆叠(tf.stack)、拆分(tf.unstack),数据统计如范数、最小最大值、平均值,排序与top_k,填充(pad)和复制(tile),张量限幅(clip_by_value、clip_by_norm),以及坐标操作(where、scatter_nd、meshgrid)。这些操作在深度学习模型构建和数据处理中非常实用。
摘要由CSDN通过智能技术生成

目录

1.合并与分割

1.1 tf.concat 

 1.2 stack

 1.3 unstack

 1.4 split

 2.数据统计

2.1向量范数

 2.2 reduce_min/max/mean

 2.3 argmax/argmin  最大值最小值位置

 2.4 tf.equal  作比较

 2.5 tf.unique

3.张量排序

3.1 sort,argsort

3.2 top_k

 计算 top_k accuracy 实例

4填充与复制

4.1pad 指定每个维度左/上边补充多少,右/下边补充多少

 4.2 tile  占内存真实复制

 5.张量限幅

5.1 clip_by_value

 5.2 clip_by_norm

 5.3 gradient clipping

6.坐标操作

6.1 where(mask) 返回坐标

 6.2 where (cond,A,B)

 6.3  scatter_nd

6.4 meshgrid  画等高线图

1.合并与分割

tf.concat        tf.split        tf.stack        tf.unstack

1.1 tf.concat 

指定 拼接轴(从左到右 分别是 0,1,2....轴) 合并不会增加维度

要求 非拼接轴维度相同

 1.2 stack

会产生一个新的维度,axis=n  增加后,增加的该维度是n轴

要求:现有的每个轴的维度都相同

 1.3 unstack

指定轴进行拆分,完全打散,指定的拆分轴的维度是8 则拆成8个

 1.4 split

可以指定  打散后分均成几份 或者具体每份的维度

 2.数据统计

2.1向量范数

 tf.norm()  2范数

 tf.norm(b,ord=2,axis=1) 对b 求2范数  沿1轴方向(列)对每一行求

 2.2 reduce_min/max/mean

 2.3 argmax/argmin  最大值最小值位置

默认 axis=0

 2.4 tf.equal  作比较

累加  相同的数  准确度

找出  概率最大的索引作为类别  并计算整体准确率

 2.5 tf.unique

 tf.gather(unique,idx)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值