感知机
特点
- 二分类的线性分类模型
- 对应于输入空间中的超平面
- 属于判别模型,是神经网络和SVM的基础
- 分为原始形式和对偶形式
一般以误分类(错误率)作为损失函数,利用梯度下降法对损失函数进行极小化。
f(x)=sign(wx+b)
其中,w是超平面法向量,b是超平面截距,wx+b=0即表示超平面
算法
算法伪代码:
注:感知机学习算法采用不同的初值或先去不同的误分类点,解可能不同。
收敛性
Novikoff定理表明,在算法过程中选取的点为误分类点的次数k是有上限的,因此,该定理也就表明了对于线性可分的训练集,经过有限次搜索可以找到完全将训练集分开的超平面。
注:
训练集线性可分时
* 感知机:收敛,多解
* SVM:收敛,唯一解
训练集不线性可分时
* 感知机:不收敛,结果震荡