MIT18.06线性代数课程笔记3b:矩阵的逆元

课程简介

18.06是Gilbert Strang教授在MIT开的线性代数公开课,课程视频以及相关资料请见https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/index.htm

课程笔记

这节课主要介绍矩阵的逆元,给出了逆元的定义、判断是否有逆元的几种方法 以及 逆元的计算方法。

1. 逆元的定义

逆元的定义很简单,从乘法定义可以直接导出。因为矩阵乘法不满足交换律,所以可以定义左逆元和右逆元。其中左逆元为 A1A=I ,而右逆元则为 AA1=I

然后Strang给出了结论:对于方阵 A (即A的行数和列数相等)有 A1A=I=AA1 ,即方阵的左右逆元相等。这个结论并没有给出推导,笔者猜测应该是会用到后面介绍的概念。

2. 判断是否有逆元的方法

  1. 最简单的方法就是穷举所有可能矩阵,发现不存在矩阵与之相乘为单位阵。这个方法明显不可取。
  2. 利用左乘一个矩阵实际等于对 A 的行向量做线性组合,所以只有A的行向量空间和 I 的行向量空间一致的时候才有可能。而Im的行向量空间是整个 m 维空间,所以等价于A行满秩。
  3. 利用 A1Ax=x ,从而若存在向量 x0 使得 Ax=0 ,则有 A1Ax=0x ,导出矛盾,从而不存在逆元。

3. 逆元的计算方法

如何求取矩阵 A1 使得 A1A=I ,即求取矩阵 A 的左逆元。

这里就引入Gauss-Jordan消元法。

Gauss消除法用于求解线性方程组的方法如下:线性方程组Ax=b,其中 A,b 已知,求解 b 。 使用原始的消除法,先构造增广矩阵 [A|b],然后对增广矩阵做行变换使得 A 变成上三角矩阵,最后从下向上做反向替换。

而Jordan在其基础上对整个增广矩阵做反向替换,使得A变为单位阵,从而使得 b 可以直接求解。

具体的,所有的行变换(交换位置、倍数、加减)都可以表示为左乘一个变换矩阵,具体例子可以参考MIT18.06线性代数课程笔记2a:矩阵相乘的三种看待角度。设所有变换矩阵的乘积为E,则有 EA=I ,即 E=A1 ,进而 Eb=A1b=x

推广到 A1 的求解方法,构建增广矩阵 [A|I] ,对其做行变换使得 A 部分变为单位阵,设所有行变换对应行变换矩阵的乘积为E,则有 E[A|I]=[I|E] ,其中 E=A1

推而广之,求解右逆元的方法是对 [A|I]T 做列变换。求解 A1B 的方法是对 [A|B] 做行变换使得 A <script type="math/tex" id="MathJax-Element-151">A</script>的部分变为单位阵。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值