直线方程 Ax + By + C = 0 的系数A,B,C有什么几何含义?

想把这个问题说清楚,不太容易。通过这篇文章,希望我能帮大家解决一些疑惑吧。

我们先来看A和B有什么含义。

在直线上取任意两点 P1:(x1, y1)和 P2:(x2, y2),得:

Ax1 + By1 + C = 0
Ax2 + By2 + C = 0

两式相减得:

A(x1 - x2) + B(y1 - y2) = 0

设O为圆点(0,0), 则:

O P 1 ⇀ = x 1 y 1 \begin{aligned} \overrightharpoon{OP1}= \begin{array} {|c|} x_{1} \\ y_{1}\\ \end{array} \end{aligned} OP1 =x1y1
O P 2 ⇀ = x 2 y 2 \begin{aligned} \overrightharpoon{OP2}= \begin{array} {|c|} x_{2} \\ y_{2}\\ \end{array} \end{aligned} OP2 =x2y2
P 2 P 1 ⇀ = O P 1 ⇀ − O P 2 ⇀ = x 1 − x 2 y 1 − y 2 \begin{aligned} \overrightharpoon{P2P1}=\overrightharpoon{OP1}-\overrightharpoon{OP2}= \begin{array} {|c|} x_{1} - x_{2} \\ y_{1} - y_{2}\\ \end{array} \end{aligned} P2P1 =OP1 OP2 =x1x2y1y2

P 2 P 1 ⇀ \overrightharpoon{P2P1} P2P1 与直线共线,上式A(x1 - x2) + B(y1 - y2) = 0,可写成向量的内积:

A B ⋅ x 1 − x 2 y 1 − y 2 = O N ⇀ ⋅ P 2 P 1 ⇀ \begin{array} {|c|} A \\ B \\ \end{array} \cdot \begin{array} {|c|} x_{1} - x_{2} \\ y_{1} - y_{2}\\ \end{array}=\overrightharpoon{ON}\cdot \overrightharpoon{P2P1} ABx1x2y1y2=ON P2P1 = 0

其中:

O N ⇀ = A B \overrightharpoon{ON}=\begin{array} {|c|} A \\ B \\ \end{array} ON =AB

两个向量的内积是0,根据内积的几何意义,这两个向量必然垂直。因此,系数A,B组成的向量是一个垂直于直线的向量。

在此,需要简要说明一下向量内积的几何意义,更深一层的意义,后续会出一篇文章单独来介绍。

V 1 ⇀ ⋅ V 2 ⇀ \overrightharpoon{V1}\cdot\overrightharpoon{V2} V1 V2 的内积值等于 V 2 ⇀ \overrightharpoon{V2} V2 V 1 ⇀ \overrightharpoon{V1} V1 上的投影长度乘以 V 1 ⇀ \overrightharpoon{V1} V1 向量的长度,如下图:

在这里插入图片描述
所以当V2与V1垂直时,V2在V1上的投影长度为0,V2与V1的内积为0。投影长度具有方向性,即投影与V1同向,投影长度为正,投影与V1反向,投影长度为负。所以我们可以根据内积的值来判断,两个向量的夹角范围:

值为正:> 0度 && < 90度
值为0:= 90度
值为负:> 90度 && < 180度

好了,回到线性方程 Ax + By = -C,将其写成向量式:

A B ⋅ x y \begin{array} {|c|} A \\ B \\ \end{array}\cdot\begin{array} {|c|} x \\ y \\ \end{array} ABxy = O N ⇀ ⋅ O P ⇀ = \overrightharpoon{ON}\cdot\overrightharpoon{OP}= ON OP = -C

根据内积的几何意义,-C的值是 O P ⇀ \overrightharpoon{OP} OP O N ⇀ \overrightharpoon{ON} ON 上的投影长度乘以向量 O N ⇀ \overrightharpoon{ON} ON 的向量长度。尤其是当 O N ⇀ \overrightharpoon{ON} ON 是单位向量(向量长度为1)时,-C的值是原点距直线的距离。

即使 O N ⇀ \overrightharpoon{ON} ON 不是单位向量,我们也可以将其转成单位向量,Ax + By = -C两边同时除以 A 2 + B 2 \sqrt{A^2 + B^2} A2+B2 ,即:
A A 2 + B 2 x + B A 2 + B 2 y = − C A 2 + B 2 \frac{A}{\sqrt{A^2 + B^2}}x + \frac{B}{\sqrt{A^2 + B^2}}y= \frac{-C}{\sqrt{A^2 + B^2}} A2+B2 Ax+A2+B2 By=A2+B2 C

此时:

O N ⇀ \overrightharpoon{ON} ON = A A 2 + B 2 B A 2 + B 2 \begin{array} {|c|} \frac{A}{\sqrt{A^2 + B^2}}\\ \frac{B}{\sqrt{A^2 + B^2}} \\ \end{array} A2+B2 AA2+B2 B为单位向量,原点距直线的距离则为: − C A 2 + B 2 \frac{-C}{\sqrt{A^2 + B^2}} A2+B2 C

好了,我们总结一下:A、B系数组成的向量垂直于直线,将A,B组成的向量转成单位向量, − C A 2 + B 2 \frac{-C}{\sqrt{A^2 + B^2}} A2+B2 C即是原点距直线的距离。

知道了该几何性质,我们可以计算空间任意一点距离直线的距离。步骤如下:假设空间任意一点P,做一条平行于已知直线并且经过点P的直线 A ′ x + B ′ y = C ′ A'x + B'y = C' Ax+By=C,计算出原点距该直线的距离: − C ′ A ′ 2 + B ′ 2 \frac{-C'}{\sqrt{A'^2 + B'^2}} A2+B2 C

两距离相减得任意一点距离直线的距离:

distance = − C ′ A ′ 2 + B ′ 2 \frac{-C'}{\sqrt{A'^2 + B'^2}} A2+B2 C - − C A 2 + B 2 \frac{-C}{\sqrt{A^2 + B^2}} A2+B2 C

  • 6
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值