基于jupyter notebook的python编程
利用梯度下降算法求解多元线性回归方程,并与最小二乘法求解进行精度对比
0.问题描述
多元线性回归问题描述如下:
为求得某个地区的商品店的月营业额是与店铺的面积相关性大,还是与该店距离车站距离的相关性大,需要我们以店铺面积、距离车站的距离、以及月营业额建立线性回归方程,并求解该方程,和相关系数:
所用的数据
自左到右依次代表店铺面积、距离车站距离和月营业额
1. 导入库、数据、并为变量赋值
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
data=np.genfromtxt('D:/面积距离车站数据.csv',delimiter=',')
x_data=data[:,:-1]
y_data=data[:,2]
2.定义系数初始值以及学习率和迭代次数
#定义学习率、斜率、截据
#设方程为y=theta1*x1+theta2*x2+theta0
lr=0.00001
theta0=0
theta1=0
theta2=0
#定义最大迭代次数,因为梯度下降法是在不断迭代更新k与b
epochs=10000
3.定义最小二乘法函数-损失函数(代价函数)
#定义最小二乘法函数-损失函数(代价函数)
def compute_error(theta0,theta1,theta2,x_data,y_data):
totalerror=0
for i in range(0,len(x_data)):#定义一共有多少样本点
totalerror=totalerror+(y_data[i]-(theta1*x_data[i,0]+theta2*x_data[i,1]+theta0))**2
return totalerror/float(len(x_data))/2
4.定义梯度下降算法求解线性回归方程系数python函数
#梯度下降算法求解参数
def gradient_descent_runner(x_data,y_data,theta0,theta1,theta2,lr,epochs):
m=len(x_data)
for i in range(epochs):
theta0_grad=0
theta1_grad=0
theta2_grad=0
for j in range(0,m):
theta0_grad-=(1/m)*(-(theta1*x_data[j,0]+theta2*x_data[j,1]+theta2)+y_data[j])
theta1_grad-=(1/m)*x_data[j,0]*(-(theta1*x_data[j,0]+theta2*x_data[j,1]+theta0)+y_data[j])
theta2_grad-=(1/m)*x_data[j,1]*(-(theta1*x_data[j,0]+theta2*x_data[j,1]+theta0)+y_data[j])
theta0=theta0-lr*theta0_grad
theta1=theta1-lr*theta1_grad
theta2=theta2-lr*theta2_grad
return theta0,theta1,theta2
5.代用函数,进行系数求解,并打印
#进行迭代求解
theta0,theta1,theta2=gradient_descent_runner(x_data,y_data,theta0,theta1,theta2,lr,epochs)
print('结果:迭代次数:{0} 学习率:{1}之后 a0={2},a1={3},a2={4},代价函数为{5}'.format(epochs,lr,theta0,theta1,theta2,compute_error(theta0,theta1,theta2,x_data,y_data)))
print("多元线性回归方程为:y=",theta1,"X1+",theta2,"X2+",theta0)
6.画出回归方程线性拟合图
#画图
ax=plt.figure().add_subplot(111,projection='3d')
ax.scatter(x_data[:,0],x_data[:,1],y_data,c='r',marker='o')
x0=x_data[:,0]
x1=x_data[:,1]
#生成网格矩阵
x0,x1=np.meshgrid(x0,x1)
z=theta0+theta1*x0+theta2*x1
#画3d图
ax.plot_surface(x0,x1,z)
ax.set_xlabel('area')
ax.set_ylabel('distance')
ax.set_zlabel("Monthly turnover")
plt.show()
7.运行结果
最小二乘法法求解多元线性回归方程的python代码实现
与梯度下降算法作对比
1.导入库,并为变量赋值
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
%matplotlib inline
data = np.genfromtxt("D:/面积距离车站数据.csv",delimiter=",")
X1=data[0:10,0]#自变量温度
X2=data[0:10,1]#因变量销售量
Y=data[0:10,2]#自变量温度
#将因变量赋值给矩阵Y1
Y1=np.array([Y]).T
#为自变量系数矩阵X赋值
X11=np.array([X1]).T
X22=np.array([X2]).T
2.创建系数矩阵,并求解系数矩阵W,截距b、a1、和a2
A=np.array([[1],[1],[1],[1],[1],[1],[1],[1],[1],[1]])#创建系数矩阵
B=np.hstack((A,X11))#将矩阵a与矩阵X11合并为矩阵b
X=np.hstack((B,X22))#将矩阵b与矩阵X22合并为矩阵X
#求矩阵X的转置矩阵
X_=X.T
#求矩阵X与他的转置矩阵的X_的乘积
X_X=np.dot(X_,X)
#求矩阵X与他的转置矩阵的X_的乘积的逆矩阵
X_X_=np.linalg.inv(X_X)
#求解系数矩阵W,分别对应截距b、a1、和a2
W=np.dot(np.dot((X_X_),(X_)),Y1)
b=W[0][0]
a1=W[1][0]
a2=W[2][0]
print("系数a1=",a1)
print("系数a2=",a2)
print("截距为=",b)
print("多元线性回归方程为:y=",a1,"X1+",a2,"X2+",b)
3.画出线性回归图
#画出线性回归分析图
data1=pd.read_excel('D:\面积距离车站数据.xlsx')
sns.pairplot(data1, x_vars=['area','distance'], y_vars='Y', height=3, aspect=0.8, kind='reg')
plt.show()
4.求解出各项值
#求月销售量Y的和以及平均值y1
sumy=0#因变量的和
y1=0#因变量的平均值
for i in range(0,len(Y)):
sumy=sumy+Y[i]
y1=sumy/len(Y)
#求月销售额y-他的平均值的和
y_y1=0#y-y1的值的和
for i in range(0,len(Y)):
y_y1=y_y1+(Y[i]-y1)
print("销售量-销售量平均值的和为:",y_y1)
#求预测值sales1
sales1=[]
for i in range(0,len(Y)):
sales1.append(a1*X1[i]+a2*X2[i]+b)
#求预测值的平均值y2
y2=0
sumy2=0
for i in range(len(sales1)):
sumy2=sumy2+sales1[i]
y2=sumy2/len(sales1)
#求预测值-平均值的和y11_y2
y11_y2=0
for i in range(0,len(sales1)):
y11_y2=y11_y2+(sales1[i]-y2)
print("预测销售值-预测销售平均值的和为:",y11_y2)
#求月销售额y-他的平均值的平方和
Syy=0#y-y1的值的平方和
for i in range(0,len(Y)):
Syy=Syy+((Y[i]-y1)*(Y[i]-y1))
print("Syy=",Syy)
#求y1-y1平均的平方和
Sy1y1=0
for i in range(0,len(sales1)):
Sy1y1=Sy1y1+((sales1[i]-y2)*(sales1[i]-y2))
print("Sy1y1=",Sy1y1)
#(y1-y1平均)*(y-y平均)
Syy1=0
for i in range(0,len(sales1)):
Syy1=Syy1+((Y[i]-y1)*(sales1[i]-y2))
print("Syy1=",Syy1)
#求R
R=Syy1/((Syy*Sy1y1)**0.5)
R2=R*R
print("判定系数R2=",R2)
5.运行结果
总结对比
通过以上对比结果可以知道,最小二乘法求解线性回归方程的精度优于梯度下降算法,这也是梯度下降算法的确定,求解精度太低,求解还需要很多次的迭代,所以,现代的人工智能机器学习的深度算法基本已经放弃梯度下降算法的求解,需要多次计算,这对计算机资源来说是一种浪费哦!现代多用于矩阵的最小二乘法进行线性回归系数的求解!