1、代价函数简介
代价函数是用来衡量假设函数(hypothesis function)的准确性,具体衡量指标是采用平方差的方式计算。例如,假设函数是 hθ(xi) = θ0 + θ1yi,那么,代价函数就是:
其中,m是样本数量。同时,这个函数还可以称为"Squared error function" 或者 "Mean squared error”,同时,除以2的原因是为了方便之后的梯度下降,也利于导数项的减少。
下面这幅图片更加直观的表达代价函数的由来:
2、代价函数详述
2.1 单变量情况
为了更加直观的理解代价函数,我们还是以线性的训练集为例子。训练集落在x-y坐标集中,在这个回归问题中,我们想生成一个假设函数,这个假设函数生成一个直线,可以大致贯穿给定的训练集。
我们的目标就是获取一个尽可能完美的直线。最好的直线,就是使我们的预估值与样本值之间的方差最小。理想情况下,直线穿过所有