机器学习-3 cost function 代价函数

本文介绍了机器学习中的代价函数,用于评估假设函数的准确性,主要以平方差为衡量标准。详细讨论了单变量和双变量情况下的代价函数,通过图形解析如何找到最优的参数值以最小化代价函数,从而提高模型的拟合效果。
摘要由CSDN通过智能技术生成

1、代价函数简介

代价函数是用来衡量假设函数(hypothesis function)的准确性,具体衡量指标是采用平方差的方式计算。例如,假设函数是 hθ(xi) = θ0 + θ1yi,那么,代价函数就是:

其中,m是样本数量。同时,这个函数还可以称为"Squared error function" 或者 "Mean squared error”,同时,除以2的原因是为了方便之后的梯度下降,也利于导数项的减少。

下面这幅图片更加直观的表达代价函数的由来:




2、代价函数详述

2.1 单变量情况

为了更加直观的理解代价函数,我们还是以线性的训练集为例子。训练集落在x-y坐标集中,在这个回归问题中,我们想生成一个假设函数,这个假设函数生成一个直线,可以大致贯穿给定的训练集。

我们的目标就是获取一个尽可能完美的直线。最好的直线,就是使我们的预估值与样本值之间的方差最小。理想情况下,直线穿过所有

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值